This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Rearrange restricted quantifiers with two different restricting classes, analogous to raaan . It is necessary that either both restricting classes are empty or both are not empty. (Contributed by Alexander van der Vekens, 29-Jun-2017)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | raaan2.1 | ⊢ Ⅎ 𝑦 𝜑 | |
| raaan2.2 | ⊢ Ⅎ 𝑥 𝜓 | ||
| Assertion | raaan2 | ⊢ ( ( 𝐴 = ∅ ↔ 𝐵 = ∅ ) → ( ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐵 ( 𝜑 ∧ 𝜓 ) ↔ ( ∀ 𝑥 ∈ 𝐴 𝜑 ∧ ∀ 𝑦 ∈ 𝐵 𝜓 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | raaan2.1 | ⊢ Ⅎ 𝑦 𝜑 | |
| 2 | raaan2.2 | ⊢ Ⅎ 𝑥 𝜓 | |
| 3 | dfbi3 | ⊢ ( ( 𝐴 = ∅ ↔ 𝐵 = ∅ ) ↔ ( ( 𝐴 = ∅ ∧ 𝐵 = ∅ ) ∨ ( ¬ 𝐴 = ∅ ∧ ¬ 𝐵 = ∅ ) ) ) | |
| 4 | rzal | ⊢ ( 𝐴 = ∅ → ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐵 ( 𝜑 ∧ 𝜓 ) ) | |
| 5 | 4 | adantr | ⊢ ( ( 𝐴 = ∅ ∧ 𝐵 = ∅ ) → ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐵 ( 𝜑 ∧ 𝜓 ) ) |
| 6 | rzal | ⊢ ( 𝐴 = ∅ → ∀ 𝑥 ∈ 𝐴 𝜑 ) | |
| 7 | 6 | adantr | ⊢ ( ( 𝐴 = ∅ ∧ 𝐵 = ∅ ) → ∀ 𝑥 ∈ 𝐴 𝜑 ) |
| 8 | rzal | ⊢ ( 𝐵 = ∅ → ∀ 𝑦 ∈ 𝐵 𝜓 ) | |
| 9 | 8 | adantl | ⊢ ( ( 𝐴 = ∅ ∧ 𝐵 = ∅ ) → ∀ 𝑦 ∈ 𝐵 𝜓 ) |
| 10 | pm5.1 | ⊢ ( ( ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐵 ( 𝜑 ∧ 𝜓 ) ∧ ( ∀ 𝑥 ∈ 𝐴 𝜑 ∧ ∀ 𝑦 ∈ 𝐵 𝜓 ) ) → ( ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐵 ( 𝜑 ∧ 𝜓 ) ↔ ( ∀ 𝑥 ∈ 𝐴 𝜑 ∧ ∀ 𝑦 ∈ 𝐵 𝜓 ) ) ) | |
| 11 | 5 7 9 10 | syl12anc | ⊢ ( ( 𝐴 = ∅ ∧ 𝐵 = ∅ ) → ( ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐵 ( 𝜑 ∧ 𝜓 ) ↔ ( ∀ 𝑥 ∈ 𝐴 𝜑 ∧ ∀ 𝑦 ∈ 𝐵 𝜓 ) ) ) |
| 12 | df-ne | ⊢ ( 𝐵 ≠ ∅ ↔ ¬ 𝐵 = ∅ ) | |
| 13 | 1 | r19.28z | ⊢ ( 𝐵 ≠ ∅ → ( ∀ 𝑦 ∈ 𝐵 ( 𝜑 ∧ 𝜓 ) ↔ ( 𝜑 ∧ ∀ 𝑦 ∈ 𝐵 𝜓 ) ) ) |
| 14 | 13 | ralbidv | ⊢ ( 𝐵 ≠ ∅ → ( ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐵 ( 𝜑 ∧ 𝜓 ) ↔ ∀ 𝑥 ∈ 𝐴 ( 𝜑 ∧ ∀ 𝑦 ∈ 𝐵 𝜓 ) ) ) |
| 15 | 12 14 | sylbir | ⊢ ( ¬ 𝐵 = ∅ → ( ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐵 ( 𝜑 ∧ 𝜓 ) ↔ ∀ 𝑥 ∈ 𝐴 ( 𝜑 ∧ ∀ 𝑦 ∈ 𝐵 𝜓 ) ) ) |
| 16 | df-ne | ⊢ ( 𝐴 ≠ ∅ ↔ ¬ 𝐴 = ∅ ) | |
| 17 | nfcv | ⊢ Ⅎ 𝑥 𝐵 | |
| 18 | 17 2 | nfralw | ⊢ Ⅎ 𝑥 ∀ 𝑦 ∈ 𝐵 𝜓 |
| 19 | 18 | r19.27z | ⊢ ( 𝐴 ≠ ∅ → ( ∀ 𝑥 ∈ 𝐴 ( 𝜑 ∧ ∀ 𝑦 ∈ 𝐵 𝜓 ) ↔ ( ∀ 𝑥 ∈ 𝐴 𝜑 ∧ ∀ 𝑦 ∈ 𝐵 𝜓 ) ) ) |
| 20 | 16 19 | sylbir | ⊢ ( ¬ 𝐴 = ∅ → ( ∀ 𝑥 ∈ 𝐴 ( 𝜑 ∧ ∀ 𝑦 ∈ 𝐵 𝜓 ) ↔ ( ∀ 𝑥 ∈ 𝐴 𝜑 ∧ ∀ 𝑦 ∈ 𝐵 𝜓 ) ) ) |
| 21 | 15 20 | sylan9bbr | ⊢ ( ( ¬ 𝐴 = ∅ ∧ ¬ 𝐵 = ∅ ) → ( ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐵 ( 𝜑 ∧ 𝜓 ) ↔ ( ∀ 𝑥 ∈ 𝐴 𝜑 ∧ ∀ 𝑦 ∈ 𝐵 𝜓 ) ) ) |
| 22 | 11 21 | jaoi | ⊢ ( ( ( 𝐴 = ∅ ∧ 𝐵 = ∅ ) ∨ ( ¬ 𝐴 = ∅ ∧ ¬ 𝐵 = ∅ ) ) → ( ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐵 ( 𝜑 ∧ 𝜓 ) ↔ ( ∀ 𝑥 ∈ 𝐴 𝜑 ∧ ∀ 𝑦 ∈ 𝐵 𝜓 ) ) ) |
| 23 | 3 22 | sylbi | ⊢ ( ( 𝐴 = ∅ ↔ 𝐵 = ∅ ) → ( ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐵 ( 𝜑 ∧ 𝜓 ) ↔ ( ∀ 𝑥 ∈ 𝐴 𝜑 ∧ ∀ 𝑦 ∈ 𝐵 𝜓 ) ) ) |