This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma 1 for 2pthd . (Contributed by AV, 14-Feb-2021)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | 2wlkd.p | ⊢ 𝑃 = 〈“ 𝐴 𝐵 𝐶 ”〉 | |
| 2wlkd.f | ⊢ 𝐹 = 〈“ 𝐽 𝐾 ”〉 | ||
| 2wlkd.s | ⊢ ( 𝜑 → ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉 ) ) | ||
| 2wlkd.n | ⊢ ( 𝜑 → ( 𝐴 ≠ 𝐵 ∧ 𝐵 ≠ 𝐶 ) ) | ||
| Assertion | 2pthdlem1 | ⊢ ( 𝜑 → ∀ 𝑘 ∈ ( 0 ..^ ( ♯ ‘ 𝑃 ) ) ∀ 𝑗 ∈ ( 1 ..^ ( ♯ ‘ 𝐹 ) ) ( 𝑘 ≠ 𝑗 → ( 𝑃 ‘ 𝑘 ) ≠ ( 𝑃 ‘ 𝑗 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 2wlkd.p | ⊢ 𝑃 = 〈“ 𝐴 𝐵 𝐶 ”〉 | |
| 2 | 2wlkd.f | ⊢ 𝐹 = 〈“ 𝐽 𝐾 ”〉 | |
| 3 | 2wlkd.s | ⊢ ( 𝜑 → ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉 ) ) | |
| 4 | 2wlkd.n | ⊢ ( 𝜑 → ( 𝐴 ≠ 𝐵 ∧ 𝐵 ≠ 𝐶 ) ) | |
| 5 | 1 2 3 | 2wlkdlem3 | ⊢ ( 𝜑 → ( ( 𝑃 ‘ 0 ) = 𝐴 ∧ ( 𝑃 ‘ 1 ) = 𝐵 ∧ ( 𝑃 ‘ 2 ) = 𝐶 ) ) |
| 6 | simpl | ⊢ ( ( ( 𝑃 ‘ 0 ) = 𝐴 ∧ ( 𝑃 ‘ 1 ) = 𝐵 ) → ( 𝑃 ‘ 0 ) = 𝐴 ) | |
| 7 | simpr | ⊢ ( ( ( 𝑃 ‘ 0 ) = 𝐴 ∧ ( 𝑃 ‘ 1 ) = 𝐵 ) → ( 𝑃 ‘ 1 ) = 𝐵 ) | |
| 8 | 6 7 | neeq12d | ⊢ ( ( ( 𝑃 ‘ 0 ) = 𝐴 ∧ ( 𝑃 ‘ 1 ) = 𝐵 ) → ( ( 𝑃 ‘ 0 ) ≠ ( 𝑃 ‘ 1 ) ↔ 𝐴 ≠ 𝐵 ) ) |
| 9 | 8 | bicomd | ⊢ ( ( ( 𝑃 ‘ 0 ) = 𝐴 ∧ ( 𝑃 ‘ 1 ) = 𝐵 ) → ( 𝐴 ≠ 𝐵 ↔ ( 𝑃 ‘ 0 ) ≠ ( 𝑃 ‘ 1 ) ) ) |
| 10 | 9 | 3adant3 | ⊢ ( ( ( 𝑃 ‘ 0 ) = 𝐴 ∧ ( 𝑃 ‘ 1 ) = 𝐵 ∧ ( 𝑃 ‘ 2 ) = 𝐶 ) → ( 𝐴 ≠ 𝐵 ↔ ( 𝑃 ‘ 0 ) ≠ ( 𝑃 ‘ 1 ) ) ) |
| 11 | 10 | biimpcd | ⊢ ( 𝐴 ≠ 𝐵 → ( ( ( 𝑃 ‘ 0 ) = 𝐴 ∧ ( 𝑃 ‘ 1 ) = 𝐵 ∧ ( 𝑃 ‘ 2 ) = 𝐶 ) → ( 𝑃 ‘ 0 ) ≠ ( 𝑃 ‘ 1 ) ) ) |
| 12 | 11 | adantr | ⊢ ( ( 𝐴 ≠ 𝐵 ∧ 𝐵 ≠ 𝐶 ) → ( ( ( 𝑃 ‘ 0 ) = 𝐴 ∧ ( 𝑃 ‘ 1 ) = 𝐵 ∧ ( 𝑃 ‘ 2 ) = 𝐶 ) → ( 𝑃 ‘ 0 ) ≠ ( 𝑃 ‘ 1 ) ) ) |
| 13 | 12 | imp | ⊢ ( ( ( 𝐴 ≠ 𝐵 ∧ 𝐵 ≠ 𝐶 ) ∧ ( ( 𝑃 ‘ 0 ) = 𝐴 ∧ ( 𝑃 ‘ 1 ) = 𝐵 ∧ ( 𝑃 ‘ 2 ) = 𝐶 ) ) → ( 𝑃 ‘ 0 ) ≠ ( 𝑃 ‘ 1 ) ) |
| 14 | 13 | a1d | ⊢ ( ( ( 𝐴 ≠ 𝐵 ∧ 𝐵 ≠ 𝐶 ) ∧ ( ( 𝑃 ‘ 0 ) = 𝐴 ∧ ( 𝑃 ‘ 1 ) = 𝐵 ∧ ( 𝑃 ‘ 2 ) = 𝐶 ) ) → ( 0 ≠ 1 → ( 𝑃 ‘ 0 ) ≠ ( 𝑃 ‘ 1 ) ) ) |
| 15 | eqid | ⊢ 1 = 1 | |
| 16 | eqneqall | ⊢ ( 1 = 1 → ( 1 ≠ 1 → ( 𝑃 ‘ 1 ) ≠ ( 𝑃 ‘ 1 ) ) ) | |
| 17 | 15 16 | mp1i | ⊢ ( ( ( 𝐴 ≠ 𝐵 ∧ 𝐵 ≠ 𝐶 ) ∧ ( ( 𝑃 ‘ 0 ) = 𝐴 ∧ ( 𝑃 ‘ 1 ) = 𝐵 ∧ ( 𝑃 ‘ 2 ) = 𝐶 ) ) → ( 1 ≠ 1 → ( 𝑃 ‘ 1 ) ≠ ( 𝑃 ‘ 1 ) ) ) |
| 18 | simpr | ⊢ ( ( ( 𝑃 ‘ 1 ) = 𝐵 ∧ ( 𝑃 ‘ 2 ) = 𝐶 ) → ( 𝑃 ‘ 2 ) = 𝐶 ) | |
| 19 | simpl | ⊢ ( ( ( 𝑃 ‘ 1 ) = 𝐵 ∧ ( 𝑃 ‘ 2 ) = 𝐶 ) → ( 𝑃 ‘ 1 ) = 𝐵 ) | |
| 20 | 18 19 | neeq12d | ⊢ ( ( ( 𝑃 ‘ 1 ) = 𝐵 ∧ ( 𝑃 ‘ 2 ) = 𝐶 ) → ( ( 𝑃 ‘ 2 ) ≠ ( 𝑃 ‘ 1 ) ↔ 𝐶 ≠ 𝐵 ) ) |
| 21 | necom | ⊢ ( 𝐶 ≠ 𝐵 ↔ 𝐵 ≠ 𝐶 ) | |
| 22 | 20 21 | bitr2di | ⊢ ( ( ( 𝑃 ‘ 1 ) = 𝐵 ∧ ( 𝑃 ‘ 2 ) = 𝐶 ) → ( 𝐵 ≠ 𝐶 ↔ ( 𝑃 ‘ 2 ) ≠ ( 𝑃 ‘ 1 ) ) ) |
| 23 | 22 | 3adant1 | ⊢ ( ( ( 𝑃 ‘ 0 ) = 𝐴 ∧ ( 𝑃 ‘ 1 ) = 𝐵 ∧ ( 𝑃 ‘ 2 ) = 𝐶 ) → ( 𝐵 ≠ 𝐶 ↔ ( 𝑃 ‘ 2 ) ≠ ( 𝑃 ‘ 1 ) ) ) |
| 24 | 23 | biimpcd | ⊢ ( 𝐵 ≠ 𝐶 → ( ( ( 𝑃 ‘ 0 ) = 𝐴 ∧ ( 𝑃 ‘ 1 ) = 𝐵 ∧ ( 𝑃 ‘ 2 ) = 𝐶 ) → ( 𝑃 ‘ 2 ) ≠ ( 𝑃 ‘ 1 ) ) ) |
| 25 | 24 | adantl | ⊢ ( ( 𝐴 ≠ 𝐵 ∧ 𝐵 ≠ 𝐶 ) → ( ( ( 𝑃 ‘ 0 ) = 𝐴 ∧ ( 𝑃 ‘ 1 ) = 𝐵 ∧ ( 𝑃 ‘ 2 ) = 𝐶 ) → ( 𝑃 ‘ 2 ) ≠ ( 𝑃 ‘ 1 ) ) ) |
| 26 | 25 | imp | ⊢ ( ( ( 𝐴 ≠ 𝐵 ∧ 𝐵 ≠ 𝐶 ) ∧ ( ( 𝑃 ‘ 0 ) = 𝐴 ∧ ( 𝑃 ‘ 1 ) = 𝐵 ∧ ( 𝑃 ‘ 2 ) = 𝐶 ) ) → ( 𝑃 ‘ 2 ) ≠ ( 𝑃 ‘ 1 ) ) |
| 27 | 26 | a1d | ⊢ ( ( ( 𝐴 ≠ 𝐵 ∧ 𝐵 ≠ 𝐶 ) ∧ ( ( 𝑃 ‘ 0 ) = 𝐴 ∧ ( 𝑃 ‘ 1 ) = 𝐵 ∧ ( 𝑃 ‘ 2 ) = 𝐶 ) ) → ( 2 ≠ 1 → ( 𝑃 ‘ 2 ) ≠ ( 𝑃 ‘ 1 ) ) ) |
| 28 | 14 17 27 | 3jca | ⊢ ( ( ( 𝐴 ≠ 𝐵 ∧ 𝐵 ≠ 𝐶 ) ∧ ( ( 𝑃 ‘ 0 ) = 𝐴 ∧ ( 𝑃 ‘ 1 ) = 𝐵 ∧ ( 𝑃 ‘ 2 ) = 𝐶 ) ) → ( ( 0 ≠ 1 → ( 𝑃 ‘ 0 ) ≠ ( 𝑃 ‘ 1 ) ) ∧ ( 1 ≠ 1 → ( 𝑃 ‘ 1 ) ≠ ( 𝑃 ‘ 1 ) ) ∧ ( 2 ≠ 1 → ( 𝑃 ‘ 2 ) ≠ ( 𝑃 ‘ 1 ) ) ) ) |
| 29 | 4 5 28 | syl2anc | ⊢ ( 𝜑 → ( ( 0 ≠ 1 → ( 𝑃 ‘ 0 ) ≠ ( 𝑃 ‘ 1 ) ) ∧ ( 1 ≠ 1 → ( 𝑃 ‘ 1 ) ≠ ( 𝑃 ‘ 1 ) ) ∧ ( 2 ≠ 1 → ( 𝑃 ‘ 2 ) ≠ ( 𝑃 ‘ 1 ) ) ) ) |
| 30 | 1 | fveq2i | ⊢ ( ♯ ‘ 𝑃 ) = ( ♯ ‘ 〈“ 𝐴 𝐵 𝐶 ”〉 ) |
| 31 | s3len | ⊢ ( ♯ ‘ 〈“ 𝐴 𝐵 𝐶 ”〉 ) = 3 | |
| 32 | 30 31 | eqtri | ⊢ ( ♯ ‘ 𝑃 ) = 3 |
| 33 | 32 | oveq2i | ⊢ ( 0 ..^ ( ♯ ‘ 𝑃 ) ) = ( 0 ..^ 3 ) |
| 34 | fzo0to3tp | ⊢ ( 0 ..^ 3 ) = { 0 , 1 , 2 } | |
| 35 | 33 34 | eqtri | ⊢ ( 0 ..^ ( ♯ ‘ 𝑃 ) ) = { 0 , 1 , 2 } |
| 36 | 35 | raleqi | ⊢ ( ∀ 𝑘 ∈ ( 0 ..^ ( ♯ ‘ 𝑃 ) ) ( 𝑘 ≠ 1 → ( 𝑃 ‘ 𝑘 ) ≠ ( 𝑃 ‘ 1 ) ) ↔ ∀ 𝑘 ∈ { 0 , 1 , 2 } ( 𝑘 ≠ 1 → ( 𝑃 ‘ 𝑘 ) ≠ ( 𝑃 ‘ 1 ) ) ) |
| 37 | c0ex | ⊢ 0 ∈ V | |
| 38 | 1ex | ⊢ 1 ∈ V | |
| 39 | 2ex | ⊢ 2 ∈ V | |
| 40 | neeq1 | ⊢ ( 𝑘 = 0 → ( 𝑘 ≠ 1 ↔ 0 ≠ 1 ) ) | |
| 41 | fveq2 | ⊢ ( 𝑘 = 0 → ( 𝑃 ‘ 𝑘 ) = ( 𝑃 ‘ 0 ) ) | |
| 42 | 41 | neeq1d | ⊢ ( 𝑘 = 0 → ( ( 𝑃 ‘ 𝑘 ) ≠ ( 𝑃 ‘ 1 ) ↔ ( 𝑃 ‘ 0 ) ≠ ( 𝑃 ‘ 1 ) ) ) |
| 43 | 40 42 | imbi12d | ⊢ ( 𝑘 = 0 → ( ( 𝑘 ≠ 1 → ( 𝑃 ‘ 𝑘 ) ≠ ( 𝑃 ‘ 1 ) ) ↔ ( 0 ≠ 1 → ( 𝑃 ‘ 0 ) ≠ ( 𝑃 ‘ 1 ) ) ) ) |
| 44 | neeq1 | ⊢ ( 𝑘 = 1 → ( 𝑘 ≠ 1 ↔ 1 ≠ 1 ) ) | |
| 45 | fveq2 | ⊢ ( 𝑘 = 1 → ( 𝑃 ‘ 𝑘 ) = ( 𝑃 ‘ 1 ) ) | |
| 46 | 45 | neeq1d | ⊢ ( 𝑘 = 1 → ( ( 𝑃 ‘ 𝑘 ) ≠ ( 𝑃 ‘ 1 ) ↔ ( 𝑃 ‘ 1 ) ≠ ( 𝑃 ‘ 1 ) ) ) |
| 47 | 44 46 | imbi12d | ⊢ ( 𝑘 = 1 → ( ( 𝑘 ≠ 1 → ( 𝑃 ‘ 𝑘 ) ≠ ( 𝑃 ‘ 1 ) ) ↔ ( 1 ≠ 1 → ( 𝑃 ‘ 1 ) ≠ ( 𝑃 ‘ 1 ) ) ) ) |
| 48 | neeq1 | ⊢ ( 𝑘 = 2 → ( 𝑘 ≠ 1 ↔ 2 ≠ 1 ) ) | |
| 49 | fveq2 | ⊢ ( 𝑘 = 2 → ( 𝑃 ‘ 𝑘 ) = ( 𝑃 ‘ 2 ) ) | |
| 50 | 49 | neeq1d | ⊢ ( 𝑘 = 2 → ( ( 𝑃 ‘ 𝑘 ) ≠ ( 𝑃 ‘ 1 ) ↔ ( 𝑃 ‘ 2 ) ≠ ( 𝑃 ‘ 1 ) ) ) |
| 51 | 48 50 | imbi12d | ⊢ ( 𝑘 = 2 → ( ( 𝑘 ≠ 1 → ( 𝑃 ‘ 𝑘 ) ≠ ( 𝑃 ‘ 1 ) ) ↔ ( 2 ≠ 1 → ( 𝑃 ‘ 2 ) ≠ ( 𝑃 ‘ 1 ) ) ) ) |
| 52 | 37 38 39 43 47 51 | raltp | ⊢ ( ∀ 𝑘 ∈ { 0 , 1 , 2 } ( 𝑘 ≠ 1 → ( 𝑃 ‘ 𝑘 ) ≠ ( 𝑃 ‘ 1 ) ) ↔ ( ( 0 ≠ 1 → ( 𝑃 ‘ 0 ) ≠ ( 𝑃 ‘ 1 ) ) ∧ ( 1 ≠ 1 → ( 𝑃 ‘ 1 ) ≠ ( 𝑃 ‘ 1 ) ) ∧ ( 2 ≠ 1 → ( 𝑃 ‘ 2 ) ≠ ( 𝑃 ‘ 1 ) ) ) ) |
| 53 | 36 52 | bitri | ⊢ ( ∀ 𝑘 ∈ ( 0 ..^ ( ♯ ‘ 𝑃 ) ) ( 𝑘 ≠ 1 → ( 𝑃 ‘ 𝑘 ) ≠ ( 𝑃 ‘ 1 ) ) ↔ ( ( 0 ≠ 1 → ( 𝑃 ‘ 0 ) ≠ ( 𝑃 ‘ 1 ) ) ∧ ( 1 ≠ 1 → ( 𝑃 ‘ 1 ) ≠ ( 𝑃 ‘ 1 ) ) ∧ ( 2 ≠ 1 → ( 𝑃 ‘ 2 ) ≠ ( 𝑃 ‘ 1 ) ) ) ) |
| 54 | 29 53 | sylibr | ⊢ ( 𝜑 → ∀ 𝑘 ∈ ( 0 ..^ ( ♯ ‘ 𝑃 ) ) ( 𝑘 ≠ 1 → ( 𝑃 ‘ 𝑘 ) ≠ ( 𝑃 ‘ 1 ) ) ) |
| 55 | 2 | fveq2i | ⊢ ( ♯ ‘ 𝐹 ) = ( ♯ ‘ 〈“ 𝐽 𝐾 ”〉 ) |
| 56 | s2len | ⊢ ( ♯ ‘ 〈“ 𝐽 𝐾 ”〉 ) = 2 | |
| 57 | 55 56 | eqtri | ⊢ ( ♯ ‘ 𝐹 ) = 2 |
| 58 | 57 | oveq2i | ⊢ ( 1 ..^ ( ♯ ‘ 𝐹 ) ) = ( 1 ..^ 2 ) |
| 59 | fzo12sn | ⊢ ( 1 ..^ 2 ) = { 1 } | |
| 60 | 58 59 | eqtri | ⊢ ( 1 ..^ ( ♯ ‘ 𝐹 ) ) = { 1 } |
| 61 | 60 | raleqi | ⊢ ( ∀ 𝑗 ∈ ( 1 ..^ ( ♯ ‘ 𝐹 ) ) ( 𝑘 ≠ 𝑗 → ( 𝑃 ‘ 𝑘 ) ≠ ( 𝑃 ‘ 𝑗 ) ) ↔ ∀ 𝑗 ∈ { 1 } ( 𝑘 ≠ 𝑗 → ( 𝑃 ‘ 𝑘 ) ≠ ( 𝑃 ‘ 𝑗 ) ) ) |
| 62 | neeq2 | ⊢ ( 𝑗 = 1 → ( 𝑘 ≠ 𝑗 ↔ 𝑘 ≠ 1 ) ) | |
| 63 | fveq2 | ⊢ ( 𝑗 = 1 → ( 𝑃 ‘ 𝑗 ) = ( 𝑃 ‘ 1 ) ) | |
| 64 | 63 | neeq2d | ⊢ ( 𝑗 = 1 → ( ( 𝑃 ‘ 𝑘 ) ≠ ( 𝑃 ‘ 𝑗 ) ↔ ( 𝑃 ‘ 𝑘 ) ≠ ( 𝑃 ‘ 1 ) ) ) |
| 65 | 62 64 | imbi12d | ⊢ ( 𝑗 = 1 → ( ( 𝑘 ≠ 𝑗 → ( 𝑃 ‘ 𝑘 ) ≠ ( 𝑃 ‘ 𝑗 ) ) ↔ ( 𝑘 ≠ 1 → ( 𝑃 ‘ 𝑘 ) ≠ ( 𝑃 ‘ 1 ) ) ) ) |
| 66 | 38 65 | ralsn | ⊢ ( ∀ 𝑗 ∈ { 1 } ( 𝑘 ≠ 𝑗 → ( 𝑃 ‘ 𝑘 ) ≠ ( 𝑃 ‘ 𝑗 ) ) ↔ ( 𝑘 ≠ 1 → ( 𝑃 ‘ 𝑘 ) ≠ ( 𝑃 ‘ 1 ) ) ) |
| 67 | 61 66 | bitri | ⊢ ( ∀ 𝑗 ∈ ( 1 ..^ ( ♯ ‘ 𝐹 ) ) ( 𝑘 ≠ 𝑗 → ( 𝑃 ‘ 𝑘 ) ≠ ( 𝑃 ‘ 𝑗 ) ) ↔ ( 𝑘 ≠ 1 → ( 𝑃 ‘ 𝑘 ) ≠ ( 𝑃 ‘ 1 ) ) ) |
| 68 | 67 | ralbii | ⊢ ( ∀ 𝑘 ∈ ( 0 ..^ ( ♯ ‘ 𝑃 ) ) ∀ 𝑗 ∈ ( 1 ..^ ( ♯ ‘ 𝐹 ) ) ( 𝑘 ≠ 𝑗 → ( 𝑃 ‘ 𝑘 ) ≠ ( 𝑃 ‘ 𝑗 ) ) ↔ ∀ 𝑘 ∈ ( 0 ..^ ( ♯ ‘ 𝑃 ) ) ( 𝑘 ≠ 1 → ( 𝑃 ‘ 𝑘 ) ≠ ( 𝑃 ‘ 1 ) ) ) |
| 69 | 54 68 | sylibr | ⊢ ( 𝜑 → ∀ 𝑘 ∈ ( 0 ..^ ( ♯ ‘ 𝑃 ) ) ∀ 𝑗 ∈ ( 1 ..^ ( ♯ ‘ 𝐹 ) ) ( 𝑘 ≠ 𝑗 → ( 𝑃 ‘ 𝑘 ) ≠ ( 𝑃 ‘ 𝑗 ) ) ) |