This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma 6 for 2wlkd . (Contributed by AV, 23-Jan-2021)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | 2wlkd.p | ⊢ 𝑃 = 〈“ 𝐴 𝐵 𝐶 ”〉 | |
| 2wlkd.f | ⊢ 𝐹 = 〈“ 𝐽 𝐾 ”〉 | ||
| 2wlkd.s | ⊢ ( 𝜑 → ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉 ) ) | ||
| 2wlkd.n | ⊢ ( 𝜑 → ( 𝐴 ≠ 𝐵 ∧ 𝐵 ≠ 𝐶 ) ) | ||
| 2wlkd.e | ⊢ ( 𝜑 → ( { 𝐴 , 𝐵 } ⊆ ( 𝐼 ‘ 𝐽 ) ∧ { 𝐵 , 𝐶 } ⊆ ( 𝐼 ‘ 𝐾 ) ) ) | ||
| Assertion | 2wlkdlem6 | ⊢ ( 𝜑 → ( 𝐵 ∈ ( 𝐼 ‘ 𝐽 ) ∧ 𝐵 ∈ ( 𝐼 ‘ 𝐾 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 2wlkd.p | ⊢ 𝑃 = 〈“ 𝐴 𝐵 𝐶 ”〉 | |
| 2 | 2wlkd.f | ⊢ 𝐹 = 〈“ 𝐽 𝐾 ”〉 | |
| 3 | 2wlkd.s | ⊢ ( 𝜑 → ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉 ) ) | |
| 4 | 2wlkd.n | ⊢ ( 𝜑 → ( 𝐴 ≠ 𝐵 ∧ 𝐵 ≠ 𝐶 ) ) | |
| 5 | 2wlkd.e | ⊢ ( 𝜑 → ( { 𝐴 , 𝐵 } ⊆ ( 𝐼 ‘ 𝐽 ) ∧ { 𝐵 , 𝐶 } ⊆ ( 𝐼 ‘ 𝐾 ) ) ) | |
| 6 | prcom | ⊢ { 𝐴 , 𝐵 } = { 𝐵 , 𝐴 } | |
| 7 | 6 | sseq1i | ⊢ ( { 𝐴 , 𝐵 } ⊆ ( 𝐼 ‘ 𝐽 ) ↔ { 𝐵 , 𝐴 } ⊆ ( 𝐼 ‘ 𝐽 ) ) |
| 8 | 7 | biimpi | ⊢ ( { 𝐴 , 𝐵 } ⊆ ( 𝐼 ‘ 𝐽 ) → { 𝐵 , 𝐴 } ⊆ ( 𝐼 ‘ 𝐽 ) ) |
| 9 | 8 | adantl | ⊢ ( ( 𝜑 ∧ { 𝐴 , 𝐵 } ⊆ ( 𝐼 ‘ 𝐽 ) ) → { 𝐵 , 𝐴 } ⊆ ( 𝐼 ‘ 𝐽 ) ) |
| 10 | 3 | simp2d | ⊢ ( 𝜑 → 𝐵 ∈ 𝑉 ) |
| 11 | 3 | simp1d | ⊢ ( 𝜑 → 𝐴 ∈ 𝑉 ) |
| 12 | 11 | adantr | ⊢ ( ( 𝜑 ∧ { 𝐴 , 𝐵 } ⊆ ( 𝐼 ‘ 𝐽 ) ) → 𝐴 ∈ 𝑉 ) |
| 13 | prssg | ⊢ ( ( 𝐵 ∈ 𝑉 ∧ 𝐴 ∈ 𝑉 ) → ( ( 𝐵 ∈ ( 𝐼 ‘ 𝐽 ) ∧ 𝐴 ∈ ( 𝐼 ‘ 𝐽 ) ) ↔ { 𝐵 , 𝐴 } ⊆ ( 𝐼 ‘ 𝐽 ) ) ) | |
| 14 | 10 12 13 | syl2an2r | ⊢ ( ( 𝜑 ∧ { 𝐴 , 𝐵 } ⊆ ( 𝐼 ‘ 𝐽 ) ) → ( ( 𝐵 ∈ ( 𝐼 ‘ 𝐽 ) ∧ 𝐴 ∈ ( 𝐼 ‘ 𝐽 ) ) ↔ { 𝐵 , 𝐴 } ⊆ ( 𝐼 ‘ 𝐽 ) ) ) |
| 15 | 9 14 | mpbird | ⊢ ( ( 𝜑 ∧ { 𝐴 , 𝐵 } ⊆ ( 𝐼 ‘ 𝐽 ) ) → ( 𝐵 ∈ ( 𝐼 ‘ 𝐽 ) ∧ 𝐴 ∈ ( 𝐼 ‘ 𝐽 ) ) ) |
| 16 | 15 | simpld | ⊢ ( ( 𝜑 ∧ { 𝐴 , 𝐵 } ⊆ ( 𝐼 ‘ 𝐽 ) ) → 𝐵 ∈ ( 𝐼 ‘ 𝐽 ) ) |
| 17 | 16 | ex | ⊢ ( 𝜑 → ( { 𝐴 , 𝐵 } ⊆ ( 𝐼 ‘ 𝐽 ) → 𝐵 ∈ ( 𝐼 ‘ 𝐽 ) ) ) |
| 18 | simpr | ⊢ ( ( 𝜑 ∧ { 𝐵 , 𝐶 } ⊆ ( 𝐼 ‘ 𝐾 ) ) → { 𝐵 , 𝐶 } ⊆ ( 𝐼 ‘ 𝐾 ) ) | |
| 19 | 3 | simp3d | ⊢ ( 𝜑 → 𝐶 ∈ 𝑉 ) |
| 20 | 19 | adantr | ⊢ ( ( 𝜑 ∧ { 𝐵 , 𝐶 } ⊆ ( 𝐼 ‘ 𝐾 ) ) → 𝐶 ∈ 𝑉 ) |
| 21 | prssg | ⊢ ( ( 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉 ) → ( ( 𝐵 ∈ ( 𝐼 ‘ 𝐾 ) ∧ 𝐶 ∈ ( 𝐼 ‘ 𝐾 ) ) ↔ { 𝐵 , 𝐶 } ⊆ ( 𝐼 ‘ 𝐾 ) ) ) | |
| 22 | 10 20 21 | syl2an2r | ⊢ ( ( 𝜑 ∧ { 𝐵 , 𝐶 } ⊆ ( 𝐼 ‘ 𝐾 ) ) → ( ( 𝐵 ∈ ( 𝐼 ‘ 𝐾 ) ∧ 𝐶 ∈ ( 𝐼 ‘ 𝐾 ) ) ↔ { 𝐵 , 𝐶 } ⊆ ( 𝐼 ‘ 𝐾 ) ) ) |
| 23 | 18 22 | mpbird | ⊢ ( ( 𝜑 ∧ { 𝐵 , 𝐶 } ⊆ ( 𝐼 ‘ 𝐾 ) ) → ( 𝐵 ∈ ( 𝐼 ‘ 𝐾 ) ∧ 𝐶 ∈ ( 𝐼 ‘ 𝐾 ) ) ) |
| 24 | 23 | simpld | ⊢ ( ( 𝜑 ∧ { 𝐵 , 𝐶 } ⊆ ( 𝐼 ‘ 𝐾 ) ) → 𝐵 ∈ ( 𝐼 ‘ 𝐾 ) ) |
| 25 | 24 | ex | ⊢ ( 𝜑 → ( { 𝐵 , 𝐶 } ⊆ ( 𝐼 ‘ 𝐾 ) → 𝐵 ∈ ( 𝐼 ‘ 𝐾 ) ) ) |
| 26 | 17 25 | anim12d | ⊢ ( 𝜑 → ( ( { 𝐴 , 𝐵 } ⊆ ( 𝐼 ‘ 𝐽 ) ∧ { 𝐵 , 𝐶 } ⊆ ( 𝐼 ‘ 𝐾 ) ) → ( 𝐵 ∈ ( 𝐼 ‘ 𝐽 ) ∧ 𝐵 ∈ ( 𝐼 ‘ 𝐾 ) ) ) ) |
| 27 | 5 26 | mpd | ⊢ ( 𝜑 → ( 𝐵 ∈ ( 𝐼 ‘ 𝐽 ) ∧ 𝐵 ∈ ( 𝐼 ‘ 𝐾 ) ) ) |