This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma 3 for 2wlkd . (Contributed by AV, 14-Feb-2021)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | 2wlkd.p | ⊢ 𝑃 = 〈“ 𝐴 𝐵 𝐶 ”〉 | |
| 2wlkd.f | ⊢ 𝐹 = 〈“ 𝐽 𝐾 ”〉 | ||
| 2wlkd.s | ⊢ ( 𝜑 → ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉 ) ) | ||
| Assertion | 2wlkdlem3 | ⊢ ( 𝜑 → ( ( 𝑃 ‘ 0 ) = 𝐴 ∧ ( 𝑃 ‘ 1 ) = 𝐵 ∧ ( 𝑃 ‘ 2 ) = 𝐶 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 2wlkd.p | ⊢ 𝑃 = 〈“ 𝐴 𝐵 𝐶 ”〉 | |
| 2 | 2wlkd.f | ⊢ 𝐹 = 〈“ 𝐽 𝐾 ”〉 | |
| 3 | 2wlkd.s | ⊢ ( 𝜑 → ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉 ) ) | |
| 4 | 1 | fveq1i | ⊢ ( 𝑃 ‘ 0 ) = ( 〈“ 𝐴 𝐵 𝐶 ”〉 ‘ 0 ) |
| 5 | s3fv0 | ⊢ ( 𝐴 ∈ 𝑉 → ( 〈“ 𝐴 𝐵 𝐶 ”〉 ‘ 0 ) = 𝐴 ) | |
| 6 | 4 5 | eqtrid | ⊢ ( 𝐴 ∈ 𝑉 → ( 𝑃 ‘ 0 ) = 𝐴 ) |
| 7 | 1 | fveq1i | ⊢ ( 𝑃 ‘ 1 ) = ( 〈“ 𝐴 𝐵 𝐶 ”〉 ‘ 1 ) |
| 8 | s3fv1 | ⊢ ( 𝐵 ∈ 𝑉 → ( 〈“ 𝐴 𝐵 𝐶 ”〉 ‘ 1 ) = 𝐵 ) | |
| 9 | 7 8 | eqtrid | ⊢ ( 𝐵 ∈ 𝑉 → ( 𝑃 ‘ 1 ) = 𝐵 ) |
| 10 | 1 | fveq1i | ⊢ ( 𝑃 ‘ 2 ) = ( 〈“ 𝐴 𝐵 𝐶 ”〉 ‘ 2 ) |
| 11 | s3fv2 | ⊢ ( 𝐶 ∈ 𝑉 → ( 〈“ 𝐴 𝐵 𝐶 ”〉 ‘ 2 ) = 𝐶 ) | |
| 12 | 10 11 | eqtrid | ⊢ ( 𝐶 ∈ 𝑉 → ( 𝑃 ‘ 2 ) = 𝐶 ) |
| 13 | 6 9 12 | 3anim123i | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉 ) → ( ( 𝑃 ‘ 0 ) = 𝐴 ∧ ( 𝑃 ‘ 1 ) = 𝐵 ∧ ( 𝑃 ‘ 2 ) = 𝐶 ) ) |
| 14 | 3 13 | syl | ⊢ ( 𝜑 → ( ( 𝑃 ‘ 0 ) = 𝐴 ∧ ( 𝑃 ‘ 1 ) = 𝐵 ∧ ( 𝑃 ‘ 2 ) = 𝐶 ) ) |