This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma 1 for 2pthd . (Contributed by AV, 14-Feb-2021)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | 2wlkd.p | |- P = <" A B C "> |
|
| 2wlkd.f | |- F = <" J K "> |
||
| 2wlkd.s | |- ( ph -> ( A e. V /\ B e. V /\ C e. V ) ) |
||
| 2wlkd.n | |- ( ph -> ( A =/= B /\ B =/= C ) ) |
||
| Assertion | 2pthdlem1 | |- ( ph -> A. k e. ( 0 ..^ ( # ` P ) ) A. j e. ( 1 ..^ ( # ` F ) ) ( k =/= j -> ( P ` k ) =/= ( P ` j ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 2wlkd.p | |- P = <" A B C "> |
|
| 2 | 2wlkd.f | |- F = <" J K "> |
|
| 3 | 2wlkd.s | |- ( ph -> ( A e. V /\ B e. V /\ C e. V ) ) |
|
| 4 | 2wlkd.n | |- ( ph -> ( A =/= B /\ B =/= C ) ) |
|
| 5 | 1 2 3 | 2wlkdlem3 | |- ( ph -> ( ( P ` 0 ) = A /\ ( P ` 1 ) = B /\ ( P ` 2 ) = C ) ) |
| 6 | simpl | |- ( ( ( P ` 0 ) = A /\ ( P ` 1 ) = B ) -> ( P ` 0 ) = A ) |
|
| 7 | simpr | |- ( ( ( P ` 0 ) = A /\ ( P ` 1 ) = B ) -> ( P ` 1 ) = B ) |
|
| 8 | 6 7 | neeq12d | |- ( ( ( P ` 0 ) = A /\ ( P ` 1 ) = B ) -> ( ( P ` 0 ) =/= ( P ` 1 ) <-> A =/= B ) ) |
| 9 | 8 | bicomd | |- ( ( ( P ` 0 ) = A /\ ( P ` 1 ) = B ) -> ( A =/= B <-> ( P ` 0 ) =/= ( P ` 1 ) ) ) |
| 10 | 9 | 3adant3 | |- ( ( ( P ` 0 ) = A /\ ( P ` 1 ) = B /\ ( P ` 2 ) = C ) -> ( A =/= B <-> ( P ` 0 ) =/= ( P ` 1 ) ) ) |
| 11 | 10 | biimpcd | |- ( A =/= B -> ( ( ( P ` 0 ) = A /\ ( P ` 1 ) = B /\ ( P ` 2 ) = C ) -> ( P ` 0 ) =/= ( P ` 1 ) ) ) |
| 12 | 11 | adantr | |- ( ( A =/= B /\ B =/= C ) -> ( ( ( P ` 0 ) = A /\ ( P ` 1 ) = B /\ ( P ` 2 ) = C ) -> ( P ` 0 ) =/= ( P ` 1 ) ) ) |
| 13 | 12 | imp | |- ( ( ( A =/= B /\ B =/= C ) /\ ( ( P ` 0 ) = A /\ ( P ` 1 ) = B /\ ( P ` 2 ) = C ) ) -> ( P ` 0 ) =/= ( P ` 1 ) ) |
| 14 | 13 | a1d | |- ( ( ( A =/= B /\ B =/= C ) /\ ( ( P ` 0 ) = A /\ ( P ` 1 ) = B /\ ( P ` 2 ) = C ) ) -> ( 0 =/= 1 -> ( P ` 0 ) =/= ( P ` 1 ) ) ) |
| 15 | eqid | |- 1 = 1 |
|
| 16 | eqneqall | |- ( 1 = 1 -> ( 1 =/= 1 -> ( P ` 1 ) =/= ( P ` 1 ) ) ) |
|
| 17 | 15 16 | mp1i | |- ( ( ( A =/= B /\ B =/= C ) /\ ( ( P ` 0 ) = A /\ ( P ` 1 ) = B /\ ( P ` 2 ) = C ) ) -> ( 1 =/= 1 -> ( P ` 1 ) =/= ( P ` 1 ) ) ) |
| 18 | simpr | |- ( ( ( P ` 1 ) = B /\ ( P ` 2 ) = C ) -> ( P ` 2 ) = C ) |
|
| 19 | simpl | |- ( ( ( P ` 1 ) = B /\ ( P ` 2 ) = C ) -> ( P ` 1 ) = B ) |
|
| 20 | 18 19 | neeq12d | |- ( ( ( P ` 1 ) = B /\ ( P ` 2 ) = C ) -> ( ( P ` 2 ) =/= ( P ` 1 ) <-> C =/= B ) ) |
| 21 | necom | |- ( C =/= B <-> B =/= C ) |
|
| 22 | 20 21 | bitr2di | |- ( ( ( P ` 1 ) = B /\ ( P ` 2 ) = C ) -> ( B =/= C <-> ( P ` 2 ) =/= ( P ` 1 ) ) ) |
| 23 | 22 | 3adant1 | |- ( ( ( P ` 0 ) = A /\ ( P ` 1 ) = B /\ ( P ` 2 ) = C ) -> ( B =/= C <-> ( P ` 2 ) =/= ( P ` 1 ) ) ) |
| 24 | 23 | biimpcd | |- ( B =/= C -> ( ( ( P ` 0 ) = A /\ ( P ` 1 ) = B /\ ( P ` 2 ) = C ) -> ( P ` 2 ) =/= ( P ` 1 ) ) ) |
| 25 | 24 | adantl | |- ( ( A =/= B /\ B =/= C ) -> ( ( ( P ` 0 ) = A /\ ( P ` 1 ) = B /\ ( P ` 2 ) = C ) -> ( P ` 2 ) =/= ( P ` 1 ) ) ) |
| 26 | 25 | imp | |- ( ( ( A =/= B /\ B =/= C ) /\ ( ( P ` 0 ) = A /\ ( P ` 1 ) = B /\ ( P ` 2 ) = C ) ) -> ( P ` 2 ) =/= ( P ` 1 ) ) |
| 27 | 26 | a1d | |- ( ( ( A =/= B /\ B =/= C ) /\ ( ( P ` 0 ) = A /\ ( P ` 1 ) = B /\ ( P ` 2 ) = C ) ) -> ( 2 =/= 1 -> ( P ` 2 ) =/= ( P ` 1 ) ) ) |
| 28 | 14 17 27 | 3jca | |- ( ( ( A =/= B /\ B =/= C ) /\ ( ( P ` 0 ) = A /\ ( P ` 1 ) = B /\ ( P ` 2 ) = C ) ) -> ( ( 0 =/= 1 -> ( P ` 0 ) =/= ( P ` 1 ) ) /\ ( 1 =/= 1 -> ( P ` 1 ) =/= ( P ` 1 ) ) /\ ( 2 =/= 1 -> ( P ` 2 ) =/= ( P ` 1 ) ) ) ) |
| 29 | 4 5 28 | syl2anc | |- ( ph -> ( ( 0 =/= 1 -> ( P ` 0 ) =/= ( P ` 1 ) ) /\ ( 1 =/= 1 -> ( P ` 1 ) =/= ( P ` 1 ) ) /\ ( 2 =/= 1 -> ( P ` 2 ) =/= ( P ` 1 ) ) ) ) |
| 30 | 1 | fveq2i | |- ( # ` P ) = ( # ` <" A B C "> ) |
| 31 | s3len | |- ( # ` <" A B C "> ) = 3 |
|
| 32 | 30 31 | eqtri | |- ( # ` P ) = 3 |
| 33 | 32 | oveq2i | |- ( 0 ..^ ( # ` P ) ) = ( 0 ..^ 3 ) |
| 34 | fzo0to3tp | |- ( 0 ..^ 3 ) = { 0 , 1 , 2 } |
|
| 35 | 33 34 | eqtri | |- ( 0 ..^ ( # ` P ) ) = { 0 , 1 , 2 } |
| 36 | 35 | raleqi | |- ( A. k e. ( 0 ..^ ( # ` P ) ) ( k =/= 1 -> ( P ` k ) =/= ( P ` 1 ) ) <-> A. k e. { 0 , 1 , 2 } ( k =/= 1 -> ( P ` k ) =/= ( P ` 1 ) ) ) |
| 37 | c0ex | |- 0 e. _V |
|
| 38 | 1ex | |- 1 e. _V |
|
| 39 | 2ex | |- 2 e. _V |
|
| 40 | neeq1 | |- ( k = 0 -> ( k =/= 1 <-> 0 =/= 1 ) ) |
|
| 41 | fveq2 | |- ( k = 0 -> ( P ` k ) = ( P ` 0 ) ) |
|
| 42 | 41 | neeq1d | |- ( k = 0 -> ( ( P ` k ) =/= ( P ` 1 ) <-> ( P ` 0 ) =/= ( P ` 1 ) ) ) |
| 43 | 40 42 | imbi12d | |- ( k = 0 -> ( ( k =/= 1 -> ( P ` k ) =/= ( P ` 1 ) ) <-> ( 0 =/= 1 -> ( P ` 0 ) =/= ( P ` 1 ) ) ) ) |
| 44 | neeq1 | |- ( k = 1 -> ( k =/= 1 <-> 1 =/= 1 ) ) |
|
| 45 | fveq2 | |- ( k = 1 -> ( P ` k ) = ( P ` 1 ) ) |
|
| 46 | 45 | neeq1d | |- ( k = 1 -> ( ( P ` k ) =/= ( P ` 1 ) <-> ( P ` 1 ) =/= ( P ` 1 ) ) ) |
| 47 | 44 46 | imbi12d | |- ( k = 1 -> ( ( k =/= 1 -> ( P ` k ) =/= ( P ` 1 ) ) <-> ( 1 =/= 1 -> ( P ` 1 ) =/= ( P ` 1 ) ) ) ) |
| 48 | neeq1 | |- ( k = 2 -> ( k =/= 1 <-> 2 =/= 1 ) ) |
|
| 49 | fveq2 | |- ( k = 2 -> ( P ` k ) = ( P ` 2 ) ) |
|
| 50 | 49 | neeq1d | |- ( k = 2 -> ( ( P ` k ) =/= ( P ` 1 ) <-> ( P ` 2 ) =/= ( P ` 1 ) ) ) |
| 51 | 48 50 | imbi12d | |- ( k = 2 -> ( ( k =/= 1 -> ( P ` k ) =/= ( P ` 1 ) ) <-> ( 2 =/= 1 -> ( P ` 2 ) =/= ( P ` 1 ) ) ) ) |
| 52 | 37 38 39 43 47 51 | raltp | |- ( A. k e. { 0 , 1 , 2 } ( k =/= 1 -> ( P ` k ) =/= ( P ` 1 ) ) <-> ( ( 0 =/= 1 -> ( P ` 0 ) =/= ( P ` 1 ) ) /\ ( 1 =/= 1 -> ( P ` 1 ) =/= ( P ` 1 ) ) /\ ( 2 =/= 1 -> ( P ` 2 ) =/= ( P ` 1 ) ) ) ) |
| 53 | 36 52 | bitri | |- ( A. k e. ( 0 ..^ ( # ` P ) ) ( k =/= 1 -> ( P ` k ) =/= ( P ` 1 ) ) <-> ( ( 0 =/= 1 -> ( P ` 0 ) =/= ( P ` 1 ) ) /\ ( 1 =/= 1 -> ( P ` 1 ) =/= ( P ` 1 ) ) /\ ( 2 =/= 1 -> ( P ` 2 ) =/= ( P ` 1 ) ) ) ) |
| 54 | 29 53 | sylibr | |- ( ph -> A. k e. ( 0 ..^ ( # ` P ) ) ( k =/= 1 -> ( P ` k ) =/= ( P ` 1 ) ) ) |
| 55 | 2 | fveq2i | |- ( # ` F ) = ( # ` <" J K "> ) |
| 56 | s2len | |- ( # ` <" J K "> ) = 2 |
|
| 57 | 55 56 | eqtri | |- ( # ` F ) = 2 |
| 58 | 57 | oveq2i | |- ( 1 ..^ ( # ` F ) ) = ( 1 ..^ 2 ) |
| 59 | fzo12sn | |- ( 1 ..^ 2 ) = { 1 } |
|
| 60 | 58 59 | eqtri | |- ( 1 ..^ ( # ` F ) ) = { 1 } |
| 61 | 60 | raleqi | |- ( A. j e. ( 1 ..^ ( # ` F ) ) ( k =/= j -> ( P ` k ) =/= ( P ` j ) ) <-> A. j e. { 1 } ( k =/= j -> ( P ` k ) =/= ( P ` j ) ) ) |
| 62 | neeq2 | |- ( j = 1 -> ( k =/= j <-> k =/= 1 ) ) |
|
| 63 | fveq2 | |- ( j = 1 -> ( P ` j ) = ( P ` 1 ) ) |
|
| 64 | 63 | neeq2d | |- ( j = 1 -> ( ( P ` k ) =/= ( P ` j ) <-> ( P ` k ) =/= ( P ` 1 ) ) ) |
| 65 | 62 64 | imbi12d | |- ( j = 1 -> ( ( k =/= j -> ( P ` k ) =/= ( P ` j ) ) <-> ( k =/= 1 -> ( P ` k ) =/= ( P ` 1 ) ) ) ) |
| 66 | 38 65 | ralsn | |- ( A. j e. { 1 } ( k =/= j -> ( P ` k ) =/= ( P ` j ) ) <-> ( k =/= 1 -> ( P ` k ) =/= ( P ` 1 ) ) ) |
| 67 | 61 66 | bitri | |- ( A. j e. ( 1 ..^ ( # ` F ) ) ( k =/= j -> ( P ` k ) =/= ( P ` j ) ) <-> ( k =/= 1 -> ( P ` k ) =/= ( P ` 1 ) ) ) |
| 68 | 67 | ralbii | |- ( A. k e. ( 0 ..^ ( # ` P ) ) A. j e. ( 1 ..^ ( # ` F ) ) ( k =/= j -> ( P ` k ) =/= ( P ` j ) ) <-> A. k e. ( 0 ..^ ( # ` P ) ) ( k =/= 1 -> ( P ` k ) =/= ( P ` 1 ) ) ) |
| 69 | 54 68 | sylibr | |- ( ph -> A. k e. ( 0 ..^ ( # ` P ) ) A. j e. ( 1 ..^ ( # ` F ) ) ( k =/= j -> ( P ` k ) =/= ( P ` j ) ) ) |