This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A subspace of a second-countable space is second-countable. (Contributed by Mario Carneiro, 21-Mar-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | 2ndcrest | ⊢ ( ( 𝐽 ∈ 2ndω ∧ 𝐴 ∈ 𝑉 ) → ( 𝐽 ↾t 𝐴 ) ∈ 2ndω ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | is2ndc | ⊢ ( 𝐽 ∈ 2ndω ↔ ∃ 𝑥 ∈ TopBases ( 𝑥 ≼ ω ∧ ( topGen ‘ 𝑥 ) = 𝐽 ) ) | |
| 2 | simplr | ⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ 𝑥 ∈ TopBases ) ∧ 𝑥 ≼ ω ) → 𝑥 ∈ TopBases ) | |
| 3 | simpll | ⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ 𝑥 ∈ TopBases ) ∧ 𝑥 ≼ ω ) → 𝐴 ∈ 𝑉 ) | |
| 4 | tgrest | ⊢ ( ( 𝑥 ∈ TopBases ∧ 𝐴 ∈ 𝑉 ) → ( topGen ‘ ( 𝑥 ↾t 𝐴 ) ) = ( ( topGen ‘ 𝑥 ) ↾t 𝐴 ) ) | |
| 5 | 2 3 4 | syl2anc | ⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ 𝑥 ∈ TopBases ) ∧ 𝑥 ≼ ω ) → ( topGen ‘ ( 𝑥 ↾t 𝐴 ) ) = ( ( topGen ‘ 𝑥 ) ↾t 𝐴 ) ) |
| 6 | restbas | ⊢ ( 𝑥 ∈ TopBases → ( 𝑥 ↾t 𝐴 ) ∈ TopBases ) | |
| 7 | 6 | ad2antlr | ⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ 𝑥 ∈ TopBases ) ∧ 𝑥 ≼ ω ) → ( 𝑥 ↾t 𝐴 ) ∈ TopBases ) |
| 8 | restval | ⊢ ( ( 𝑥 ∈ TopBases ∧ 𝐴 ∈ 𝑉 ) → ( 𝑥 ↾t 𝐴 ) = ran ( 𝑦 ∈ 𝑥 ↦ ( 𝑦 ∩ 𝐴 ) ) ) | |
| 9 | 2 3 8 | syl2anc | ⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ 𝑥 ∈ TopBases ) ∧ 𝑥 ≼ ω ) → ( 𝑥 ↾t 𝐴 ) = ran ( 𝑦 ∈ 𝑥 ↦ ( 𝑦 ∩ 𝐴 ) ) ) |
| 10 | 1stcrestlem | ⊢ ( 𝑥 ≼ ω → ran ( 𝑦 ∈ 𝑥 ↦ ( 𝑦 ∩ 𝐴 ) ) ≼ ω ) | |
| 11 | 10 | adantl | ⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ 𝑥 ∈ TopBases ) ∧ 𝑥 ≼ ω ) → ran ( 𝑦 ∈ 𝑥 ↦ ( 𝑦 ∩ 𝐴 ) ) ≼ ω ) |
| 12 | 9 11 | eqbrtrd | ⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ 𝑥 ∈ TopBases ) ∧ 𝑥 ≼ ω ) → ( 𝑥 ↾t 𝐴 ) ≼ ω ) |
| 13 | 2ndci | ⊢ ( ( ( 𝑥 ↾t 𝐴 ) ∈ TopBases ∧ ( 𝑥 ↾t 𝐴 ) ≼ ω ) → ( topGen ‘ ( 𝑥 ↾t 𝐴 ) ) ∈ 2ndω ) | |
| 14 | 7 12 13 | syl2anc | ⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ 𝑥 ∈ TopBases ) ∧ 𝑥 ≼ ω ) → ( topGen ‘ ( 𝑥 ↾t 𝐴 ) ) ∈ 2ndω ) |
| 15 | 5 14 | eqeltrrd | ⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ 𝑥 ∈ TopBases ) ∧ 𝑥 ≼ ω ) → ( ( topGen ‘ 𝑥 ) ↾t 𝐴 ) ∈ 2ndω ) |
| 16 | oveq1 | ⊢ ( ( topGen ‘ 𝑥 ) = 𝐽 → ( ( topGen ‘ 𝑥 ) ↾t 𝐴 ) = ( 𝐽 ↾t 𝐴 ) ) | |
| 17 | 16 | eleq1d | ⊢ ( ( topGen ‘ 𝑥 ) = 𝐽 → ( ( ( topGen ‘ 𝑥 ) ↾t 𝐴 ) ∈ 2ndω ↔ ( 𝐽 ↾t 𝐴 ) ∈ 2ndω ) ) |
| 18 | 15 17 | syl5ibcom | ⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ 𝑥 ∈ TopBases ) ∧ 𝑥 ≼ ω ) → ( ( topGen ‘ 𝑥 ) = 𝐽 → ( 𝐽 ↾t 𝐴 ) ∈ 2ndω ) ) |
| 19 | 18 | expimpd | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝑥 ∈ TopBases ) → ( ( 𝑥 ≼ ω ∧ ( topGen ‘ 𝑥 ) = 𝐽 ) → ( 𝐽 ↾t 𝐴 ) ∈ 2ndω ) ) |
| 20 | 19 | rexlimdva | ⊢ ( 𝐴 ∈ 𝑉 → ( ∃ 𝑥 ∈ TopBases ( 𝑥 ≼ ω ∧ ( topGen ‘ 𝑥 ) = 𝐽 ) → ( 𝐽 ↾t 𝐴 ) ∈ 2ndω ) ) |
| 21 | 1 20 | biimtrid | ⊢ ( 𝐴 ∈ 𝑉 → ( 𝐽 ∈ 2ndω → ( 𝐽 ↾t 𝐴 ) ∈ 2ndω ) ) |
| 22 | 21 | impcom | ⊢ ( ( 𝐽 ∈ 2ndω ∧ 𝐴 ∈ 𝑉 ) → ( 𝐽 ↾t 𝐴 ) ∈ 2ndω ) |