This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A subspace of a second-countable space is second-countable. (Contributed by Mario Carneiro, 21-Mar-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | 2ndcrest | |- ( ( J e. 2ndc /\ A e. V ) -> ( J |`t A ) e. 2ndc ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | is2ndc | |- ( J e. 2ndc <-> E. x e. TopBases ( x ~<_ _om /\ ( topGen ` x ) = J ) ) |
|
| 2 | simplr | |- ( ( ( A e. V /\ x e. TopBases ) /\ x ~<_ _om ) -> x e. TopBases ) |
|
| 3 | simpll | |- ( ( ( A e. V /\ x e. TopBases ) /\ x ~<_ _om ) -> A e. V ) |
|
| 4 | tgrest | |- ( ( x e. TopBases /\ A e. V ) -> ( topGen ` ( x |`t A ) ) = ( ( topGen ` x ) |`t A ) ) |
|
| 5 | 2 3 4 | syl2anc | |- ( ( ( A e. V /\ x e. TopBases ) /\ x ~<_ _om ) -> ( topGen ` ( x |`t A ) ) = ( ( topGen ` x ) |`t A ) ) |
| 6 | restbas | |- ( x e. TopBases -> ( x |`t A ) e. TopBases ) |
|
| 7 | 6 | ad2antlr | |- ( ( ( A e. V /\ x e. TopBases ) /\ x ~<_ _om ) -> ( x |`t A ) e. TopBases ) |
| 8 | restval | |- ( ( x e. TopBases /\ A e. V ) -> ( x |`t A ) = ran ( y e. x |-> ( y i^i A ) ) ) |
|
| 9 | 2 3 8 | syl2anc | |- ( ( ( A e. V /\ x e. TopBases ) /\ x ~<_ _om ) -> ( x |`t A ) = ran ( y e. x |-> ( y i^i A ) ) ) |
| 10 | 1stcrestlem | |- ( x ~<_ _om -> ran ( y e. x |-> ( y i^i A ) ) ~<_ _om ) |
|
| 11 | 10 | adantl | |- ( ( ( A e. V /\ x e. TopBases ) /\ x ~<_ _om ) -> ran ( y e. x |-> ( y i^i A ) ) ~<_ _om ) |
| 12 | 9 11 | eqbrtrd | |- ( ( ( A e. V /\ x e. TopBases ) /\ x ~<_ _om ) -> ( x |`t A ) ~<_ _om ) |
| 13 | 2ndci | |- ( ( ( x |`t A ) e. TopBases /\ ( x |`t A ) ~<_ _om ) -> ( topGen ` ( x |`t A ) ) e. 2ndc ) |
|
| 14 | 7 12 13 | syl2anc | |- ( ( ( A e. V /\ x e. TopBases ) /\ x ~<_ _om ) -> ( topGen ` ( x |`t A ) ) e. 2ndc ) |
| 15 | 5 14 | eqeltrrd | |- ( ( ( A e. V /\ x e. TopBases ) /\ x ~<_ _om ) -> ( ( topGen ` x ) |`t A ) e. 2ndc ) |
| 16 | oveq1 | |- ( ( topGen ` x ) = J -> ( ( topGen ` x ) |`t A ) = ( J |`t A ) ) |
|
| 17 | 16 | eleq1d | |- ( ( topGen ` x ) = J -> ( ( ( topGen ` x ) |`t A ) e. 2ndc <-> ( J |`t A ) e. 2ndc ) ) |
| 18 | 15 17 | syl5ibcom | |- ( ( ( A e. V /\ x e. TopBases ) /\ x ~<_ _om ) -> ( ( topGen ` x ) = J -> ( J |`t A ) e. 2ndc ) ) |
| 19 | 18 | expimpd | |- ( ( A e. V /\ x e. TopBases ) -> ( ( x ~<_ _om /\ ( topGen ` x ) = J ) -> ( J |`t A ) e. 2ndc ) ) |
| 20 | 19 | rexlimdva | |- ( A e. V -> ( E. x e. TopBases ( x ~<_ _om /\ ( topGen ` x ) = J ) -> ( J |`t A ) e. 2ndc ) ) |
| 21 | 1 20 | biimtrid | |- ( A e. V -> ( J e. 2ndc -> ( J |`t A ) e. 2ndc ) ) |
| 22 | 21 | impcom | |- ( ( J e. 2ndc /\ A e. V ) -> ( J |`t A ) e. 2ndc ) |