This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Two ways of expressing "there exists at most one ordered pair <. x , y >. such that ph ( x , y ) holds. See also 2mo2 . (Contributed by NM, 2-Feb-2005) (Revised by Mario Carneiro, 17-Oct-2016) (Proof shortened by Wolf Lammen, 2-Nov-2019)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | 2mo | ⊢ ( ∃ 𝑧 ∃ 𝑤 ∀ 𝑥 ∀ 𝑦 ( 𝜑 → ( 𝑥 = 𝑧 ∧ 𝑦 = 𝑤 ) ) ↔ ∀ 𝑥 ∀ 𝑦 ∀ 𝑧 ∀ 𝑤 ( ( 𝜑 ∧ [ 𝑧 / 𝑥 ] [ 𝑤 / 𝑦 ] 𝜑 ) → ( 𝑥 = 𝑧 ∧ 𝑦 = 𝑤 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 2mo2 | ⊢ ( ( ∃* 𝑥 ∃ 𝑦 𝜑 ∧ ∃* 𝑦 ∃ 𝑥 𝜑 ) ↔ ∃ 𝑧 ∃ 𝑤 ∀ 𝑥 ∀ 𝑦 ( 𝜑 → ( 𝑥 = 𝑧 ∧ 𝑦 = 𝑤 ) ) ) | |
| 2 | nfmo1 | ⊢ Ⅎ 𝑥 ∃* 𝑥 ∃ 𝑦 𝜑 | |
| 3 | nfe1 | ⊢ Ⅎ 𝑥 ∃ 𝑥 𝜑 | |
| 4 | 3 | nfmov | ⊢ Ⅎ 𝑥 ∃* 𝑦 ∃ 𝑥 𝜑 |
| 5 | 2 4 | nfan | ⊢ Ⅎ 𝑥 ( ∃* 𝑥 ∃ 𝑦 𝜑 ∧ ∃* 𝑦 ∃ 𝑥 𝜑 ) |
| 6 | nfe1 | ⊢ Ⅎ 𝑦 ∃ 𝑦 𝜑 | |
| 7 | 6 | nfmov | ⊢ Ⅎ 𝑦 ∃* 𝑥 ∃ 𝑦 𝜑 |
| 8 | nfmo1 | ⊢ Ⅎ 𝑦 ∃* 𝑦 ∃ 𝑥 𝜑 | |
| 9 | 7 8 | nfan | ⊢ Ⅎ 𝑦 ( ∃* 𝑥 ∃ 𝑦 𝜑 ∧ ∃* 𝑦 ∃ 𝑥 𝜑 ) |
| 10 | 19.8a | ⊢ ( 𝜑 → ∃ 𝑦 𝜑 ) | |
| 11 | spsbe | ⊢ ( [ 𝑤 / 𝑦 ] 𝜑 → ∃ 𝑦 𝜑 ) | |
| 12 | 11 | sbimi | ⊢ ( [ 𝑧 / 𝑥 ] [ 𝑤 / 𝑦 ] 𝜑 → [ 𝑧 / 𝑥 ] ∃ 𝑦 𝜑 ) |
| 13 | nfv | ⊢ Ⅎ 𝑧 ∃ 𝑦 𝜑 | |
| 14 | 13 | mo3 | ⊢ ( ∃* 𝑥 ∃ 𝑦 𝜑 ↔ ∀ 𝑥 ∀ 𝑧 ( ( ∃ 𝑦 𝜑 ∧ [ 𝑧 / 𝑥 ] ∃ 𝑦 𝜑 ) → 𝑥 = 𝑧 ) ) |
| 15 | 14 | biimpi | ⊢ ( ∃* 𝑥 ∃ 𝑦 𝜑 → ∀ 𝑥 ∀ 𝑧 ( ( ∃ 𝑦 𝜑 ∧ [ 𝑧 / 𝑥 ] ∃ 𝑦 𝜑 ) → 𝑥 = 𝑧 ) ) |
| 16 | 15 | 19.21bbi | ⊢ ( ∃* 𝑥 ∃ 𝑦 𝜑 → ( ( ∃ 𝑦 𝜑 ∧ [ 𝑧 / 𝑥 ] ∃ 𝑦 𝜑 ) → 𝑥 = 𝑧 ) ) |
| 17 | 10 12 16 | syl2ani | ⊢ ( ∃* 𝑥 ∃ 𝑦 𝜑 → ( ( 𝜑 ∧ [ 𝑧 / 𝑥 ] [ 𝑤 / 𝑦 ] 𝜑 ) → 𝑥 = 𝑧 ) ) |
| 18 | 19.8a | ⊢ ( 𝜑 → ∃ 𝑥 𝜑 ) | |
| 19 | sbcom2 | ⊢ ( [ 𝑧 / 𝑥 ] [ 𝑤 / 𝑦 ] 𝜑 ↔ [ 𝑤 / 𝑦 ] [ 𝑧 / 𝑥 ] 𝜑 ) | |
| 20 | spsbe | ⊢ ( [ 𝑧 / 𝑥 ] 𝜑 → ∃ 𝑥 𝜑 ) | |
| 21 | 20 | sbimi | ⊢ ( [ 𝑤 / 𝑦 ] [ 𝑧 / 𝑥 ] 𝜑 → [ 𝑤 / 𝑦 ] ∃ 𝑥 𝜑 ) |
| 22 | 19 21 | sylbi | ⊢ ( [ 𝑧 / 𝑥 ] [ 𝑤 / 𝑦 ] 𝜑 → [ 𝑤 / 𝑦 ] ∃ 𝑥 𝜑 ) |
| 23 | nfv | ⊢ Ⅎ 𝑤 ∃ 𝑥 𝜑 | |
| 24 | 23 | mo3 | ⊢ ( ∃* 𝑦 ∃ 𝑥 𝜑 ↔ ∀ 𝑦 ∀ 𝑤 ( ( ∃ 𝑥 𝜑 ∧ [ 𝑤 / 𝑦 ] ∃ 𝑥 𝜑 ) → 𝑦 = 𝑤 ) ) |
| 25 | 24 | biimpi | ⊢ ( ∃* 𝑦 ∃ 𝑥 𝜑 → ∀ 𝑦 ∀ 𝑤 ( ( ∃ 𝑥 𝜑 ∧ [ 𝑤 / 𝑦 ] ∃ 𝑥 𝜑 ) → 𝑦 = 𝑤 ) ) |
| 26 | 25 | 19.21bbi | ⊢ ( ∃* 𝑦 ∃ 𝑥 𝜑 → ( ( ∃ 𝑥 𝜑 ∧ [ 𝑤 / 𝑦 ] ∃ 𝑥 𝜑 ) → 𝑦 = 𝑤 ) ) |
| 27 | 18 22 26 | syl2ani | ⊢ ( ∃* 𝑦 ∃ 𝑥 𝜑 → ( ( 𝜑 ∧ [ 𝑧 / 𝑥 ] [ 𝑤 / 𝑦 ] 𝜑 ) → 𝑦 = 𝑤 ) ) |
| 28 | 17 27 | anim12ii | ⊢ ( ( ∃* 𝑥 ∃ 𝑦 𝜑 ∧ ∃* 𝑦 ∃ 𝑥 𝜑 ) → ( ( 𝜑 ∧ [ 𝑧 / 𝑥 ] [ 𝑤 / 𝑦 ] 𝜑 ) → ( 𝑥 = 𝑧 ∧ 𝑦 = 𝑤 ) ) ) |
| 29 | 9 28 | alrimi | ⊢ ( ( ∃* 𝑥 ∃ 𝑦 𝜑 ∧ ∃* 𝑦 ∃ 𝑥 𝜑 ) → ∀ 𝑦 ( ( 𝜑 ∧ [ 𝑧 / 𝑥 ] [ 𝑤 / 𝑦 ] 𝜑 ) → ( 𝑥 = 𝑧 ∧ 𝑦 = 𝑤 ) ) ) |
| 30 | 5 29 | alrimi | ⊢ ( ( ∃* 𝑥 ∃ 𝑦 𝜑 ∧ ∃* 𝑦 ∃ 𝑥 𝜑 ) → ∀ 𝑥 ∀ 𝑦 ( ( 𝜑 ∧ [ 𝑧 / 𝑥 ] [ 𝑤 / 𝑦 ] 𝜑 ) → ( 𝑥 = 𝑧 ∧ 𝑦 = 𝑤 ) ) ) |
| 31 | 30 | alrimivv | ⊢ ( ( ∃* 𝑥 ∃ 𝑦 𝜑 ∧ ∃* 𝑦 ∃ 𝑥 𝜑 ) → ∀ 𝑧 ∀ 𝑤 ∀ 𝑥 ∀ 𝑦 ( ( 𝜑 ∧ [ 𝑧 / 𝑥 ] [ 𝑤 / 𝑦 ] 𝜑 ) → ( 𝑥 = 𝑧 ∧ 𝑦 = 𝑤 ) ) ) |
| 32 | 1 31 | sylbir | ⊢ ( ∃ 𝑧 ∃ 𝑤 ∀ 𝑥 ∀ 𝑦 ( 𝜑 → ( 𝑥 = 𝑧 ∧ 𝑦 = 𝑤 ) ) → ∀ 𝑧 ∀ 𝑤 ∀ 𝑥 ∀ 𝑦 ( ( 𝜑 ∧ [ 𝑧 / 𝑥 ] [ 𝑤 / 𝑦 ] 𝜑 ) → ( 𝑥 = 𝑧 ∧ 𝑦 = 𝑤 ) ) ) |
| 33 | nfs1v | ⊢ Ⅎ 𝑥 [ 𝑧 / 𝑥 ] [ 𝑤 / 𝑦 ] 𝜑 | |
| 34 | nfs1v | ⊢ Ⅎ 𝑦 [ 𝑤 / 𝑦 ] 𝜑 | |
| 35 | 34 | nfsbv | ⊢ Ⅎ 𝑦 [ 𝑧 / 𝑥 ] [ 𝑤 / 𝑦 ] 𝜑 |
| 36 | pm3.21 | ⊢ ( [ 𝑧 / 𝑥 ] [ 𝑤 / 𝑦 ] 𝜑 → ( 𝜑 → ( 𝜑 ∧ [ 𝑧 / 𝑥 ] [ 𝑤 / 𝑦 ] 𝜑 ) ) ) | |
| 37 | 36 | imim1d | ⊢ ( [ 𝑧 / 𝑥 ] [ 𝑤 / 𝑦 ] 𝜑 → ( ( ( 𝜑 ∧ [ 𝑧 / 𝑥 ] [ 𝑤 / 𝑦 ] 𝜑 ) → ( 𝑥 = 𝑧 ∧ 𝑦 = 𝑤 ) ) → ( 𝜑 → ( 𝑥 = 𝑧 ∧ 𝑦 = 𝑤 ) ) ) ) |
| 38 | 35 37 | alimd | ⊢ ( [ 𝑧 / 𝑥 ] [ 𝑤 / 𝑦 ] 𝜑 → ( ∀ 𝑦 ( ( 𝜑 ∧ [ 𝑧 / 𝑥 ] [ 𝑤 / 𝑦 ] 𝜑 ) → ( 𝑥 = 𝑧 ∧ 𝑦 = 𝑤 ) ) → ∀ 𝑦 ( 𝜑 → ( 𝑥 = 𝑧 ∧ 𝑦 = 𝑤 ) ) ) ) |
| 39 | 33 38 | alimd | ⊢ ( [ 𝑧 / 𝑥 ] [ 𝑤 / 𝑦 ] 𝜑 → ( ∀ 𝑥 ∀ 𝑦 ( ( 𝜑 ∧ [ 𝑧 / 𝑥 ] [ 𝑤 / 𝑦 ] 𝜑 ) → ( 𝑥 = 𝑧 ∧ 𝑦 = 𝑤 ) ) → ∀ 𝑥 ∀ 𝑦 ( 𝜑 → ( 𝑥 = 𝑧 ∧ 𝑦 = 𝑤 ) ) ) ) |
| 40 | 39 | com12 | ⊢ ( ∀ 𝑥 ∀ 𝑦 ( ( 𝜑 ∧ [ 𝑧 / 𝑥 ] [ 𝑤 / 𝑦 ] 𝜑 ) → ( 𝑥 = 𝑧 ∧ 𝑦 = 𝑤 ) ) → ( [ 𝑧 / 𝑥 ] [ 𝑤 / 𝑦 ] 𝜑 → ∀ 𝑥 ∀ 𝑦 ( 𝜑 → ( 𝑥 = 𝑧 ∧ 𝑦 = 𝑤 ) ) ) ) |
| 41 | 40 | aleximi | ⊢ ( ∀ 𝑤 ∀ 𝑥 ∀ 𝑦 ( ( 𝜑 ∧ [ 𝑧 / 𝑥 ] [ 𝑤 / 𝑦 ] 𝜑 ) → ( 𝑥 = 𝑧 ∧ 𝑦 = 𝑤 ) ) → ( ∃ 𝑤 [ 𝑧 / 𝑥 ] [ 𝑤 / 𝑦 ] 𝜑 → ∃ 𝑤 ∀ 𝑥 ∀ 𝑦 ( 𝜑 → ( 𝑥 = 𝑧 ∧ 𝑦 = 𝑤 ) ) ) ) |
| 42 | 41 | aleximi | ⊢ ( ∀ 𝑧 ∀ 𝑤 ∀ 𝑥 ∀ 𝑦 ( ( 𝜑 ∧ [ 𝑧 / 𝑥 ] [ 𝑤 / 𝑦 ] 𝜑 ) → ( 𝑥 = 𝑧 ∧ 𝑦 = 𝑤 ) ) → ( ∃ 𝑧 ∃ 𝑤 [ 𝑧 / 𝑥 ] [ 𝑤 / 𝑦 ] 𝜑 → ∃ 𝑧 ∃ 𝑤 ∀ 𝑥 ∀ 𝑦 ( 𝜑 → ( 𝑥 = 𝑧 ∧ 𝑦 = 𝑤 ) ) ) ) |
| 43 | 2nexaln | ⊢ ( ¬ ∃ 𝑥 ∃ 𝑦 𝜑 ↔ ∀ 𝑥 ∀ 𝑦 ¬ 𝜑 ) | |
| 44 | nfv | ⊢ Ⅎ 𝑤 𝜑 | |
| 45 | nfv | ⊢ Ⅎ 𝑧 𝜑 | |
| 46 | 44 45 | 2sb8ef | ⊢ ( ∃ 𝑥 ∃ 𝑦 𝜑 ↔ ∃ 𝑧 ∃ 𝑤 [ 𝑧 / 𝑥 ] [ 𝑤 / 𝑦 ] 𝜑 ) |
| 47 | 43 46 | xchnxbi | ⊢ ( ¬ ∃ 𝑧 ∃ 𝑤 [ 𝑧 / 𝑥 ] [ 𝑤 / 𝑦 ] 𝜑 ↔ ∀ 𝑥 ∀ 𝑦 ¬ 𝜑 ) |
| 48 | pm2.21 | ⊢ ( ¬ 𝜑 → ( 𝜑 → ( 𝑥 = 𝑧 ∧ 𝑦 = 𝑤 ) ) ) | |
| 49 | 48 | 2alimi | ⊢ ( ∀ 𝑥 ∀ 𝑦 ¬ 𝜑 → ∀ 𝑥 ∀ 𝑦 ( 𝜑 → ( 𝑥 = 𝑧 ∧ 𝑦 = 𝑤 ) ) ) |
| 50 | 49 | 2eximi | ⊢ ( ∃ 𝑧 ∃ 𝑤 ∀ 𝑥 ∀ 𝑦 ¬ 𝜑 → ∃ 𝑧 ∃ 𝑤 ∀ 𝑥 ∀ 𝑦 ( 𝜑 → ( 𝑥 = 𝑧 ∧ 𝑦 = 𝑤 ) ) ) |
| 51 | 50 | 19.23bi | ⊢ ( ∃ 𝑤 ∀ 𝑥 ∀ 𝑦 ¬ 𝜑 → ∃ 𝑧 ∃ 𝑤 ∀ 𝑥 ∀ 𝑦 ( 𝜑 → ( 𝑥 = 𝑧 ∧ 𝑦 = 𝑤 ) ) ) |
| 52 | 51 | 19.23bi | ⊢ ( ∀ 𝑥 ∀ 𝑦 ¬ 𝜑 → ∃ 𝑧 ∃ 𝑤 ∀ 𝑥 ∀ 𝑦 ( 𝜑 → ( 𝑥 = 𝑧 ∧ 𝑦 = 𝑤 ) ) ) |
| 53 | 47 52 | sylbi | ⊢ ( ¬ ∃ 𝑧 ∃ 𝑤 [ 𝑧 / 𝑥 ] [ 𝑤 / 𝑦 ] 𝜑 → ∃ 𝑧 ∃ 𝑤 ∀ 𝑥 ∀ 𝑦 ( 𝜑 → ( 𝑥 = 𝑧 ∧ 𝑦 = 𝑤 ) ) ) |
| 54 | 42 53 | pm2.61d1 | ⊢ ( ∀ 𝑧 ∀ 𝑤 ∀ 𝑥 ∀ 𝑦 ( ( 𝜑 ∧ [ 𝑧 / 𝑥 ] [ 𝑤 / 𝑦 ] 𝜑 ) → ( 𝑥 = 𝑧 ∧ 𝑦 = 𝑤 ) ) → ∃ 𝑧 ∃ 𝑤 ∀ 𝑥 ∀ 𝑦 ( 𝜑 → ( 𝑥 = 𝑧 ∧ 𝑦 = 𝑤 ) ) ) |
| 55 | 32 54 | impbii | ⊢ ( ∃ 𝑧 ∃ 𝑤 ∀ 𝑥 ∀ 𝑦 ( 𝜑 → ( 𝑥 = 𝑧 ∧ 𝑦 = 𝑤 ) ) ↔ ∀ 𝑧 ∀ 𝑤 ∀ 𝑥 ∀ 𝑦 ( ( 𝜑 ∧ [ 𝑧 / 𝑥 ] [ 𝑤 / 𝑦 ] 𝜑 ) → ( 𝑥 = 𝑧 ∧ 𝑦 = 𝑤 ) ) ) |
| 56 | alrot4 | ⊢ ( ∀ 𝑧 ∀ 𝑤 ∀ 𝑥 ∀ 𝑦 ( ( 𝜑 ∧ [ 𝑧 / 𝑥 ] [ 𝑤 / 𝑦 ] 𝜑 ) → ( 𝑥 = 𝑧 ∧ 𝑦 = 𝑤 ) ) ↔ ∀ 𝑥 ∀ 𝑦 ∀ 𝑧 ∀ 𝑤 ( ( 𝜑 ∧ [ 𝑧 / 𝑥 ] [ 𝑤 / 𝑦 ] 𝜑 ) → ( 𝑥 = 𝑧 ∧ 𝑦 = 𝑤 ) ) ) | |
| 57 | 55 56 | bitri | ⊢ ( ∃ 𝑧 ∃ 𝑤 ∀ 𝑥 ∀ 𝑦 ( 𝜑 → ( 𝑥 = 𝑧 ∧ 𝑦 = 𝑤 ) ) ↔ ∀ 𝑥 ∀ 𝑦 ∀ 𝑧 ∀ 𝑤 ( ( 𝜑 ∧ [ 𝑧 / 𝑥 ] [ 𝑤 / 𝑦 ] 𝜑 ) → ( 𝑥 = 𝑧 ∧ 𝑦 = 𝑤 ) ) ) |