This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Commutativity law for substitution. Used in proof of Theorem 9.7 of Megill p. 449 (p. 16 of the preprint). (Contributed by NM, 27-May-1997) (Proof shortened by Wolf Lammen, 23-Dec-2022)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | sbcom2 | ⊢ ( [ 𝑤 / 𝑧 ] [ 𝑦 / 𝑥 ] 𝜑 ↔ [ 𝑦 / 𝑥 ] [ 𝑤 / 𝑧 ] 𝜑 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 2sb6 | ⊢ ( [ 𝑣 / 𝑧 ] [ 𝑢 / 𝑥 ] 𝜑 ↔ ∀ 𝑧 ∀ 𝑥 ( ( 𝑧 = 𝑣 ∧ 𝑥 = 𝑢 ) → 𝜑 ) ) | |
| 2 | alcom | ⊢ ( ∀ 𝑧 ∀ 𝑥 ( ( 𝑧 = 𝑣 ∧ 𝑥 = 𝑢 ) → 𝜑 ) ↔ ∀ 𝑥 ∀ 𝑧 ( ( 𝑧 = 𝑣 ∧ 𝑥 = 𝑢 ) → 𝜑 ) ) | |
| 3 | ancomst | ⊢ ( ( ( 𝑧 = 𝑣 ∧ 𝑥 = 𝑢 ) → 𝜑 ) ↔ ( ( 𝑥 = 𝑢 ∧ 𝑧 = 𝑣 ) → 𝜑 ) ) | |
| 4 | 3 | 2albii | ⊢ ( ∀ 𝑥 ∀ 𝑧 ( ( 𝑧 = 𝑣 ∧ 𝑥 = 𝑢 ) → 𝜑 ) ↔ ∀ 𝑥 ∀ 𝑧 ( ( 𝑥 = 𝑢 ∧ 𝑧 = 𝑣 ) → 𝜑 ) ) |
| 5 | 1 2 4 | 3bitri | ⊢ ( [ 𝑣 / 𝑧 ] [ 𝑢 / 𝑥 ] 𝜑 ↔ ∀ 𝑥 ∀ 𝑧 ( ( 𝑥 = 𝑢 ∧ 𝑧 = 𝑣 ) → 𝜑 ) ) |
| 6 | 2sb6 | ⊢ ( [ 𝑢 / 𝑥 ] [ 𝑣 / 𝑧 ] 𝜑 ↔ ∀ 𝑥 ∀ 𝑧 ( ( 𝑥 = 𝑢 ∧ 𝑧 = 𝑣 ) → 𝜑 ) ) | |
| 7 | 5 6 | bitr4i | ⊢ ( [ 𝑣 / 𝑧 ] [ 𝑢 / 𝑥 ] 𝜑 ↔ [ 𝑢 / 𝑥 ] [ 𝑣 / 𝑧 ] 𝜑 ) |
| 8 | sbequ | ⊢ ( 𝑢 = 𝑦 → ( [ 𝑢 / 𝑥 ] 𝜑 ↔ [ 𝑦 / 𝑥 ] 𝜑 ) ) | |
| 9 | 8 | sbbidv | ⊢ ( 𝑢 = 𝑦 → ( [ 𝑣 / 𝑧 ] [ 𝑢 / 𝑥 ] 𝜑 ↔ [ 𝑣 / 𝑧 ] [ 𝑦 / 𝑥 ] 𝜑 ) ) |
| 10 | 7 9 | bitr3id | ⊢ ( 𝑢 = 𝑦 → ( [ 𝑢 / 𝑥 ] [ 𝑣 / 𝑧 ] 𝜑 ↔ [ 𝑣 / 𝑧 ] [ 𝑦 / 𝑥 ] 𝜑 ) ) |
| 11 | sbequ | ⊢ ( 𝑣 = 𝑤 → ( [ 𝑣 / 𝑧 ] [ 𝑦 / 𝑥 ] 𝜑 ↔ [ 𝑤 / 𝑧 ] [ 𝑦 / 𝑥 ] 𝜑 ) ) | |
| 12 | 10 11 | sylan9bb | ⊢ ( ( 𝑢 = 𝑦 ∧ 𝑣 = 𝑤 ) → ( [ 𝑢 / 𝑥 ] [ 𝑣 / 𝑧 ] 𝜑 ↔ [ 𝑤 / 𝑧 ] [ 𝑦 / 𝑥 ] 𝜑 ) ) |
| 13 | sbequ | ⊢ ( 𝑣 = 𝑤 → ( [ 𝑣 / 𝑧 ] 𝜑 ↔ [ 𝑤 / 𝑧 ] 𝜑 ) ) | |
| 14 | 13 | sbbidv | ⊢ ( 𝑣 = 𝑤 → ( [ 𝑢 / 𝑥 ] [ 𝑣 / 𝑧 ] 𝜑 ↔ [ 𝑢 / 𝑥 ] [ 𝑤 / 𝑧 ] 𝜑 ) ) |
| 15 | sbequ | ⊢ ( 𝑢 = 𝑦 → ( [ 𝑢 / 𝑥 ] [ 𝑤 / 𝑧 ] 𝜑 ↔ [ 𝑦 / 𝑥 ] [ 𝑤 / 𝑧 ] 𝜑 ) ) | |
| 16 | 14 15 | sylan9bbr | ⊢ ( ( 𝑢 = 𝑦 ∧ 𝑣 = 𝑤 ) → ( [ 𝑢 / 𝑥 ] [ 𝑣 / 𝑧 ] 𝜑 ↔ [ 𝑦 / 𝑥 ] [ 𝑤 / 𝑧 ] 𝜑 ) ) |
| 17 | 12 16 | bitr3d | ⊢ ( ( 𝑢 = 𝑦 ∧ 𝑣 = 𝑤 ) → ( [ 𝑤 / 𝑧 ] [ 𝑦 / 𝑥 ] 𝜑 ↔ [ 𝑦 / 𝑥 ] [ 𝑤 / 𝑧 ] 𝜑 ) ) |
| 18 | 17 | ex | ⊢ ( 𝑢 = 𝑦 → ( 𝑣 = 𝑤 → ( [ 𝑤 / 𝑧 ] [ 𝑦 / 𝑥 ] 𝜑 ↔ [ 𝑦 / 𝑥 ] [ 𝑤 / 𝑧 ] 𝜑 ) ) ) |
| 19 | ax6ev | ⊢ ∃ 𝑢 𝑢 = 𝑦 | |
| 20 | 18 19 | exlimiiv | ⊢ ( 𝑣 = 𝑤 → ( [ 𝑤 / 𝑧 ] [ 𝑦 / 𝑥 ] 𝜑 ↔ [ 𝑦 / 𝑥 ] [ 𝑤 / 𝑧 ] 𝜑 ) ) |
| 21 | ax6ev | ⊢ ∃ 𝑣 𝑣 = 𝑤 | |
| 22 | 20 21 | exlimiiv | ⊢ ( [ 𝑤 / 𝑧 ] [ 𝑦 / 𝑥 ] 𝜑 ↔ [ 𝑦 / 𝑥 ] [ 𝑤 / 𝑧 ] 𝜑 ) |