This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Two ways of expressing "there exists at most one ordered pair <. x , y >. such that ph ( x , y ) holds. Note that this is not equivalent to E* x E* y ph . See also 2mo . This is the analogue of 2eu4 for existential uniqueness. (Contributed by Wolf Lammen, 26-Oct-2019) Reduce dependencies on axioms. (Revised by Wolf Lammen, 3-Jan-2023)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | 2mo2 | ⊢ ( ( ∃* 𝑥 ∃ 𝑦 𝜑 ∧ ∃* 𝑦 ∃ 𝑥 𝜑 ) ↔ ∃ 𝑧 ∃ 𝑤 ∀ 𝑥 ∀ 𝑦 ( 𝜑 → ( 𝑥 = 𝑧 ∧ 𝑦 = 𝑤 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | exdistrv | ⊢ ( ∃ 𝑧 ∃ 𝑤 ( ∀ 𝑥 ( ∃ 𝑦 𝜑 → 𝑥 = 𝑧 ) ∧ ∀ 𝑦 ( ∃ 𝑥 𝜑 → 𝑦 = 𝑤 ) ) ↔ ( ∃ 𝑧 ∀ 𝑥 ( ∃ 𝑦 𝜑 → 𝑥 = 𝑧 ) ∧ ∃ 𝑤 ∀ 𝑦 ( ∃ 𝑥 𝜑 → 𝑦 = 𝑤 ) ) ) | |
| 2 | jcab | ⊢ ( ( 𝜑 → ( 𝑥 = 𝑧 ∧ 𝑦 = 𝑤 ) ) ↔ ( ( 𝜑 → 𝑥 = 𝑧 ) ∧ ( 𝜑 → 𝑦 = 𝑤 ) ) ) | |
| 3 | 2 | 2albii | ⊢ ( ∀ 𝑥 ∀ 𝑦 ( 𝜑 → ( 𝑥 = 𝑧 ∧ 𝑦 = 𝑤 ) ) ↔ ∀ 𝑥 ∀ 𝑦 ( ( 𝜑 → 𝑥 = 𝑧 ) ∧ ( 𝜑 → 𝑦 = 𝑤 ) ) ) |
| 4 | 19.26-2 | ⊢ ( ∀ 𝑥 ∀ 𝑦 ( ( 𝜑 → 𝑥 = 𝑧 ) ∧ ( 𝜑 → 𝑦 = 𝑤 ) ) ↔ ( ∀ 𝑥 ∀ 𝑦 ( 𝜑 → 𝑥 = 𝑧 ) ∧ ∀ 𝑥 ∀ 𝑦 ( 𝜑 → 𝑦 = 𝑤 ) ) ) | |
| 5 | 19.23v | ⊢ ( ∀ 𝑦 ( 𝜑 → 𝑥 = 𝑧 ) ↔ ( ∃ 𝑦 𝜑 → 𝑥 = 𝑧 ) ) | |
| 6 | 5 | albii | ⊢ ( ∀ 𝑥 ∀ 𝑦 ( 𝜑 → 𝑥 = 𝑧 ) ↔ ∀ 𝑥 ( ∃ 𝑦 𝜑 → 𝑥 = 𝑧 ) ) |
| 7 | alcom | ⊢ ( ∀ 𝑥 ∀ 𝑦 ( 𝜑 → 𝑦 = 𝑤 ) ↔ ∀ 𝑦 ∀ 𝑥 ( 𝜑 → 𝑦 = 𝑤 ) ) | |
| 8 | 19.23v | ⊢ ( ∀ 𝑥 ( 𝜑 → 𝑦 = 𝑤 ) ↔ ( ∃ 𝑥 𝜑 → 𝑦 = 𝑤 ) ) | |
| 9 | 8 | albii | ⊢ ( ∀ 𝑦 ∀ 𝑥 ( 𝜑 → 𝑦 = 𝑤 ) ↔ ∀ 𝑦 ( ∃ 𝑥 𝜑 → 𝑦 = 𝑤 ) ) |
| 10 | 7 9 | bitri | ⊢ ( ∀ 𝑥 ∀ 𝑦 ( 𝜑 → 𝑦 = 𝑤 ) ↔ ∀ 𝑦 ( ∃ 𝑥 𝜑 → 𝑦 = 𝑤 ) ) |
| 11 | 6 10 | anbi12i | ⊢ ( ( ∀ 𝑥 ∀ 𝑦 ( 𝜑 → 𝑥 = 𝑧 ) ∧ ∀ 𝑥 ∀ 𝑦 ( 𝜑 → 𝑦 = 𝑤 ) ) ↔ ( ∀ 𝑥 ( ∃ 𝑦 𝜑 → 𝑥 = 𝑧 ) ∧ ∀ 𝑦 ( ∃ 𝑥 𝜑 → 𝑦 = 𝑤 ) ) ) |
| 12 | 3 4 11 | 3bitri | ⊢ ( ∀ 𝑥 ∀ 𝑦 ( 𝜑 → ( 𝑥 = 𝑧 ∧ 𝑦 = 𝑤 ) ) ↔ ( ∀ 𝑥 ( ∃ 𝑦 𝜑 → 𝑥 = 𝑧 ) ∧ ∀ 𝑦 ( ∃ 𝑥 𝜑 → 𝑦 = 𝑤 ) ) ) |
| 13 | 12 | 2exbii | ⊢ ( ∃ 𝑧 ∃ 𝑤 ∀ 𝑥 ∀ 𝑦 ( 𝜑 → ( 𝑥 = 𝑧 ∧ 𝑦 = 𝑤 ) ) ↔ ∃ 𝑧 ∃ 𝑤 ( ∀ 𝑥 ( ∃ 𝑦 𝜑 → 𝑥 = 𝑧 ) ∧ ∀ 𝑦 ( ∃ 𝑥 𝜑 → 𝑦 = 𝑤 ) ) ) |
| 14 | df-mo | ⊢ ( ∃* 𝑥 ∃ 𝑦 𝜑 ↔ ∃ 𝑧 ∀ 𝑥 ( ∃ 𝑦 𝜑 → 𝑥 = 𝑧 ) ) | |
| 15 | df-mo | ⊢ ( ∃* 𝑦 ∃ 𝑥 𝜑 ↔ ∃ 𝑤 ∀ 𝑦 ( ∃ 𝑥 𝜑 → 𝑦 = 𝑤 ) ) | |
| 16 | 14 15 | anbi12i | ⊢ ( ( ∃* 𝑥 ∃ 𝑦 𝜑 ∧ ∃* 𝑦 ∃ 𝑥 𝜑 ) ↔ ( ∃ 𝑧 ∀ 𝑥 ( ∃ 𝑦 𝜑 → 𝑥 = 𝑧 ) ∧ ∃ 𝑤 ∀ 𝑦 ( ∃ 𝑥 𝜑 → 𝑦 = 𝑤 ) ) ) |
| 17 | 1 13 16 | 3bitr4ri | ⊢ ( ( ∃* 𝑥 ∃ 𝑦 𝜑 ∧ ∃* 𝑦 ∃ 𝑥 𝜑 ) ↔ ∃ 𝑧 ∃ 𝑤 ∀ 𝑥 ∀ 𝑦 ( 𝜑 → ( 𝑥 = 𝑧 ∧ 𝑦 = 𝑤 ) ) ) |