This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: An equivalent expression for double existence. Version of 2sb8e with more disjoint variable conditions, not requiring ax-13 . (Contributed by Wolf Lammen, 28-Jan-2023)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | 2sb8ef.1 | ⊢ Ⅎ 𝑤 𝜑 | |
| 2sb8ef.2 | ⊢ Ⅎ 𝑧 𝜑 | ||
| Assertion | 2sb8ef | ⊢ ( ∃ 𝑥 ∃ 𝑦 𝜑 ↔ ∃ 𝑧 ∃ 𝑤 [ 𝑧 / 𝑥 ] [ 𝑤 / 𝑦 ] 𝜑 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 2sb8ef.1 | ⊢ Ⅎ 𝑤 𝜑 | |
| 2 | 2sb8ef.2 | ⊢ Ⅎ 𝑧 𝜑 | |
| 3 | 1 | sb8ef | ⊢ ( ∃ 𝑦 𝜑 ↔ ∃ 𝑤 [ 𝑤 / 𝑦 ] 𝜑 ) |
| 4 | 3 | exbii | ⊢ ( ∃ 𝑥 ∃ 𝑦 𝜑 ↔ ∃ 𝑥 ∃ 𝑤 [ 𝑤 / 𝑦 ] 𝜑 ) |
| 5 | excom | ⊢ ( ∃ 𝑥 ∃ 𝑤 [ 𝑤 / 𝑦 ] 𝜑 ↔ ∃ 𝑤 ∃ 𝑥 [ 𝑤 / 𝑦 ] 𝜑 ) | |
| 6 | 4 5 | bitri | ⊢ ( ∃ 𝑥 ∃ 𝑦 𝜑 ↔ ∃ 𝑤 ∃ 𝑥 [ 𝑤 / 𝑦 ] 𝜑 ) |
| 7 | 2 | nfsbv | ⊢ Ⅎ 𝑧 [ 𝑤 / 𝑦 ] 𝜑 |
| 8 | 7 | sb8ef | ⊢ ( ∃ 𝑥 [ 𝑤 / 𝑦 ] 𝜑 ↔ ∃ 𝑧 [ 𝑧 / 𝑥 ] [ 𝑤 / 𝑦 ] 𝜑 ) |
| 9 | 8 | exbii | ⊢ ( ∃ 𝑤 ∃ 𝑥 [ 𝑤 / 𝑦 ] 𝜑 ↔ ∃ 𝑤 ∃ 𝑧 [ 𝑧 / 𝑥 ] [ 𝑤 / 𝑦 ] 𝜑 ) |
| 10 | excom | ⊢ ( ∃ 𝑤 ∃ 𝑧 [ 𝑧 / 𝑥 ] [ 𝑤 / 𝑦 ] 𝜑 ↔ ∃ 𝑧 ∃ 𝑤 [ 𝑧 / 𝑥 ] [ 𝑤 / 𝑦 ] 𝜑 ) | |
| 11 | 6 9 10 | 3bitri | ⊢ ( ∃ 𝑥 ∃ 𝑦 𝜑 ↔ ∃ 𝑧 ∃ 𝑤 [ 𝑧 / 𝑥 ] [ 𝑤 / 𝑦 ] 𝜑 ) |