This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Double "there exists at most one", using implicit substitution. (Contributed by NM, 10-Feb-2005) (Proof shortened by Wolf Lammen, 21-May-2025)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | 2mos.1 | ⊢ ( ( 𝑥 = 𝑧 ∧ 𝑦 = 𝑤 ) → ( 𝜑 ↔ 𝜓 ) ) | |
| Assertion | 2mos | ⊢ ( ∃ 𝑧 ∃ 𝑤 ∀ 𝑥 ∀ 𝑦 ( 𝜑 → ( 𝑥 = 𝑧 ∧ 𝑦 = 𝑤 ) ) ↔ ∀ 𝑥 ∀ 𝑦 ∀ 𝑧 ∀ 𝑤 ( ( 𝜑 ∧ 𝜓 ) → ( 𝑥 = 𝑧 ∧ 𝑦 = 𝑤 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 2mos.1 | ⊢ ( ( 𝑥 = 𝑧 ∧ 𝑦 = 𝑤 ) → ( 𝜑 ↔ 𝜓 ) ) | |
| 2 | 2mo | ⊢ ( ∃ 𝑧 ∃ 𝑤 ∀ 𝑥 ∀ 𝑦 ( 𝜑 → ( 𝑥 = 𝑧 ∧ 𝑦 = 𝑤 ) ) ↔ ∀ 𝑥 ∀ 𝑦 ∀ 𝑧 ∀ 𝑤 ( ( 𝜑 ∧ [ 𝑧 / 𝑥 ] [ 𝑤 / 𝑦 ] 𝜑 ) → ( 𝑥 = 𝑧 ∧ 𝑦 = 𝑤 ) ) ) | |
| 3 | 1 | 2sbievw | ⊢ ( [ 𝑧 / 𝑥 ] [ 𝑤 / 𝑦 ] 𝜑 ↔ 𝜓 ) |
| 4 | 3 | anbi2i | ⊢ ( ( 𝜑 ∧ [ 𝑧 / 𝑥 ] [ 𝑤 / 𝑦 ] 𝜑 ) ↔ ( 𝜑 ∧ 𝜓 ) ) |
| 5 | 4 | imbi1i | ⊢ ( ( ( 𝜑 ∧ [ 𝑧 / 𝑥 ] [ 𝑤 / 𝑦 ] 𝜑 ) → ( 𝑥 = 𝑧 ∧ 𝑦 = 𝑤 ) ) ↔ ( ( 𝜑 ∧ 𝜓 ) → ( 𝑥 = 𝑧 ∧ 𝑦 = 𝑤 ) ) ) |
| 6 | 5 | 2albii | ⊢ ( ∀ 𝑧 ∀ 𝑤 ( ( 𝜑 ∧ [ 𝑧 / 𝑥 ] [ 𝑤 / 𝑦 ] 𝜑 ) → ( 𝑥 = 𝑧 ∧ 𝑦 = 𝑤 ) ) ↔ ∀ 𝑧 ∀ 𝑤 ( ( 𝜑 ∧ 𝜓 ) → ( 𝑥 = 𝑧 ∧ 𝑦 = 𝑤 ) ) ) |
| 7 | 6 | 2albii | ⊢ ( ∀ 𝑥 ∀ 𝑦 ∀ 𝑧 ∀ 𝑤 ( ( 𝜑 ∧ [ 𝑧 / 𝑥 ] [ 𝑤 / 𝑦 ] 𝜑 ) → ( 𝑥 = 𝑧 ∧ 𝑦 = 𝑤 ) ) ↔ ∀ 𝑥 ∀ 𝑦 ∀ 𝑧 ∀ 𝑤 ( ( 𝜑 ∧ 𝜓 ) → ( 𝑥 = 𝑧 ∧ 𝑦 = 𝑤 ) ) ) |
| 8 | 2 7 | bitri | ⊢ ( ∃ 𝑧 ∃ 𝑤 ∀ 𝑥 ∀ 𝑦 ( 𝜑 → ( 𝑥 = 𝑧 ∧ 𝑦 = 𝑤 ) ) ↔ ∀ 𝑥 ∀ 𝑦 ∀ 𝑧 ∀ 𝑤 ( ( 𝜑 ∧ 𝜓 ) → ( 𝑥 = 𝑧 ∧ 𝑦 = 𝑤 ) ) ) |