This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A variant of al2imi : instead of applying A. x quantifiers to the final implication, replace them with E. x . A shorter proof is possible using nfa1 , sps and eximd , but it depends on more axioms. (Contributed by Wolf Lammen, 18-Aug-2019)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | aleximi.1 | ⊢ ( 𝜑 → ( 𝜓 → 𝜒 ) ) | |
| Assertion | aleximi | ⊢ ( ∀ 𝑥 𝜑 → ( ∃ 𝑥 𝜓 → ∃ 𝑥 𝜒 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | aleximi.1 | ⊢ ( 𝜑 → ( 𝜓 → 𝜒 ) ) | |
| 2 | 1 | con3d | ⊢ ( 𝜑 → ( ¬ 𝜒 → ¬ 𝜓 ) ) |
| 3 | 2 | al2imi | ⊢ ( ∀ 𝑥 𝜑 → ( ∀ 𝑥 ¬ 𝜒 → ∀ 𝑥 ¬ 𝜓 ) ) |
| 4 | alnex | ⊢ ( ∀ 𝑥 ¬ 𝜒 ↔ ¬ ∃ 𝑥 𝜒 ) | |
| 5 | alnex | ⊢ ( ∀ 𝑥 ¬ 𝜓 ↔ ¬ ∃ 𝑥 𝜓 ) | |
| 6 | 3 4 5 | 3imtr3g | ⊢ ( ∀ 𝑥 𝜑 → ( ¬ ∃ 𝑥 𝜒 → ¬ ∃ 𝑥 𝜓 ) ) |
| 7 | 6 | con4d | ⊢ ( ∀ 𝑥 𝜑 → ( ∃ 𝑥 𝜓 → ∃ 𝑥 𝜒 ) ) |