This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Relate an integer limit on a not-quite-function to a real limit. (Contributed by Mario Carneiro, 17-Sep-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | climmpt2.1 | ⊢ 𝑍 = ( ℤ≥ ‘ 𝑀 ) | |
| climmpt2.2 | ⊢ ( 𝜑 → 𝑀 ∈ ℤ ) | ||
| climmpt2.3 | ⊢ ( 𝜑 → 𝐹 ∈ 𝑉 ) | ||
| climmpt2.5 | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) → ( 𝐹 ‘ 𝑘 ) ∈ ℂ ) | ||
| Assertion | climmpt2 | ⊢ ( 𝜑 → ( 𝐹 ⇝ 𝐴 ↔ ( 𝑛 ∈ 𝑍 ↦ ( 𝐹 ‘ 𝑛 ) ) ⇝𝑟 𝐴 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | climmpt2.1 | ⊢ 𝑍 = ( ℤ≥ ‘ 𝑀 ) | |
| 2 | climmpt2.2 | ⊢ ( 𝜑 → 𝑀 ∈ ℤ ) | |
| 3 | climmpt2.3 | ⊢ ( 𝜑 → 𝐹 ∈ 𝑉 ) | |
| 4 | climmpt2.5 | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) → ( 𝐹 ‘ 𝑘 ) ∈ ℂ ) | |
| 5 | eqid | ⊢ ( 𝑛 ∈ 𝑍 ↦ ( 𝐹 ‘ 𝑛 ) ) = ( 𝑛 ∈ 𝑍 ↦ ( 𝐹 ‘ 𝑛 ) ) | |
| 6 | 1 5 | climmpt | ⊢ ( ( 𝑀 ∈ ℤ ∧ 𝐹 ∈ 𝑉 ) → ( 𝐹 ⇝ 𝐴 ↔ ( 𝑛 ∈ 𝑍 ↦ ( 𝐹 ‘ 𝑛 ) ) ⇝ 𝐴 ) ) |
| 7 | 2 3 6 | syl2anc | ⊢ ( 𝜑 → ( 𝐹 ⇝ 𝐴 ↔ ( 𝑛 ∈ 𝑍 ↦ ( 𝐹 ‘ 𝑛 ) ) ⇝ 𝐴 ) ) |
| 8 | 4 | ralrimiva | ⊢ ( 𝜑 → ∀ 𝑘 ∈ 𝑍 ( 𝐹 ‘ 𝑘 ) ∈ ℂ ) |
| 9 | fveq2 | ⊢ ( 𝑘 = 𝑚 → ( 𝐹 ‘ 𝑘 ) = ( 𝐹 ‘ 𝑚 ) ) | |
| 10 | 9 | eleq1d | ⊢ ( 𝑘 = 𝑚 → ( ( 𝐹 ‘ 𝑘 ) ∈ ℂ ↔ ( 𝐹 ‘ 𝑚 ) ∈ ℂ ) ) |
| 11 | 10 | cbvralvw | ⊢ ( ∀ 𝑘 ∈ 𝑍 ( 𝐹 ‘ 𝑘 ) ∈ ℂ ↔ ∀ 𝑚 ∈ 𝑍 ( 𝐹 ‘ 𝑚 ) ∈ ℂ ) |
| 12 | fveq2 | ⊢ ( 𝑚 = 𝑛 → ( 𝐹 ‘ 𝑚 ) = ( 𝐹 ‘ 𝑛 ) ) | |
| 13 | 12 | eleq1d | ⊢ ( 𝑚 = 𝑛 → ( ( 𝐹 ‘ 𝑚 ) ∈ ℂ ↔ ( 𝐹 ‘ 𝑛 ) ∈ ℂ ) ) |
| 14 | 13 | cbvralvw | ⊢ ( ∀ 𝑚 ∈ 𝑍 ( 𝐹 ‘ 𝑚 ) ∈ ℂ ↔ ∀ 𝑛 ∈ 𝑍 ( 𝐹 ‘ 𝑛 ) ∈ ℂ ) |
| 15 | 11 14 | bitri | ⊢ ( ∀ 𝑘 ∈ 𝑍 ( 𝐹 ‘ 𝑘 ) ∈ ℂ ↔ ∀ 𝑛 ∈ 𝑍 ( 𝐹 ‘ 𝑛 ) ∈ ℂ ) |
| 16 | 8 15 | sylib | ⊢ ( 𝜑 → ∀ 𝑛 ∈ 𝑍 ( 𝐹 ‘ 𝑛 ) ∈ ℂ ) |
| 17 | 16 | r19.21bi | ⊢ ( ( 𝜑 ∧ 𝑛 ∈ 𝑍 ) → ( 𝐹 ‘ 𝑛 ) ∈ ℂ ) |
| 18 | 17 | fmpttd | ⊢ ( 𝜑 → ( 𝑛 ∈ 𝑍 ↦ ( 𝐹 ‘ 𝑛 ) ) : 𝑍 ⟶ ℂ ) |
| 19 | 1 2 18 | rlimclim | ⊢ ( 𝜑 → ( ( 𝑛 ∈ 𝑍 ↦ ( 𝐹 ‘ 𝑛 ) ) ⇝𝑟 𝐴 ↔ ( 𝑛 ∈ 𝑍 ↦ ( 𝐹 ‘ 𝑛 ) ) ⇝ 𝐴 ) ) |
| 20 | 7 19 | bitr4d | ⊢ ( 𝜑 → ( 𝐹 ⇝ 𝐴 ↔ ( 𝑛 ∈ 𝑍 ↦ ( 𝐹 ‘ 𝑛 ) ) ⇝𝑟 𝐴 ) ) |