This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: One is less than two (one plus one). (Contributed by NM, 13-Mar-1996) (Revised by Mario Carneiro, 10-May-2013) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | 1lt2nq | ⊢ 1Q <Q ( 1Q +Q 1Q ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 1lt2pi | ⊢ 1o <N ( 1o +N 1o ) | |
| 2 | 1pi | ⊢ 1o ∈ N | |
| 3 | mulidpi | ⊢ ( 1o ∈ N → ( 1o ·N 1o ) = 1o ) | |
| 4 | 2 3 | ax-mp | ⊢ ( 1o ·N 1o ) = 1o |
| 5 | addclpi | ⊢ ( ( 1o ∈ N ∧ 1o ∈ N ) → ( 1o +N 1o ) ∈ N ) | |
| 6 | 2 2 5 | mp2an | ⊢ ( 1o +N 1o ) ∈ N |
| 7 | mulidpi | ⊢ ( ( 1o +N 1o ) ∈ N → ( ( 1o +N 1o ) ·N 1o ) = ( 1o +N 1o ) ) | |
| 8 | 6 7 | ax-mp | ⊢ ( ( 1o +N 1o ) ·N 1o ) = ( 1o +N 1o ) |
| 9 | 1 4 8 | 3brtr4i | ⊢ ( 1o ·N 1o ) <N ( ( 1o +N 1o ) ·N 1o ) |
| 10 | ordpipq | ⊢ ( 〈 1o , 1o 〉 <pQ 〈 ( 1o +N 1o ) , 1o 〉 ↔ ( 1o ·N 1o ) <N ( ( 1o +N 1o ) ·N 1o ) ) | |
| 11 | 9 10 | mpbir | ⊢ 〈 1o , 1o 〉 <pQ 〈 ( 1o +N 1o ) , 1o 〉 |
| 12 | df-1nq | ⊢ 1Q = 〈 1o , 1o 〉 | |
| 13 | 12 12 | oveq12i | ⊢ ( 1Q +pQ 1Q ) = ( 〈 1o , 1o 〉 +pQ 〈 1o , 1o 〉 ) |
| 14 | addpipq | ⊢ ( ( ( 1o ∈ N ∧ 1o ∈ N ) ∧ ( 1o ∈ N ∧ 1o ∈ N ) ) → ( 〈 1o , 1o 〉 +pQ 〈 1o , 1o 〉 ) = 〈 ( ( 1o ·N 1o ) +N ( 1o ·N 1o ) ) , ( 1o ·N 1o ) 〉 ) | |
| 15 | 2 2 2 2 14 | mp4an | ⊢ ( 〈 1o , 1o 〉 +pQ 〈 1o , 1o 〉 ) = 〈 ( ( 1o ·N 1o ) +N ( 1o ·N 1o ) ) , ( 1o ·N 1o ) 〉 |
| 16 | 4 4 | oveq12i | ⊢ ( ( 1o ·N 1o ) +N ( 1o ·N 1o ) ) = ( 1o +N 1o ) |
| 17 | 16 4 | opeq12i | ⊢ 〈 ( ( 1o ·N 1o ) +N ( 1o ·N 1o ) ) , ( 1o ·N 1o ) 〉 = 〈 ( 1o +N 1o ) , 1o 〉 |
| 18 | 13 15 17 | 3eqtri | ⊢ ( 1Q +pQ 1Q ) = 〈 ( 1o +N 1o ) , 1o 〉 |
| 19 | 11 12 18 | 3brtr4i | ⊢ 1Q <pQ ( 1Q +pQ 1Q ) |
| 20 | lterpq | ⊢ ( 1Q <pQ ( 1Q +pQ 1Q ) ↔ ( [Q] ‘ 1Q ) <Q ( [Q] ‘ ( 1Q +pQ 1Q ) ) ) | |
| 21 | 19 20 | mpbi | ⊢ ( [Q] ‘ 1Q ) <Q ( [Q] ‘ ( 1Q +pQ 1Q ) ) |
| 22 | 1nq | ⊢ 1Q ∈ Q | |
| 23 | nqerid | ⊢ ( 1Q ∈ Q → ( [Q] ‘ 1Q ) = 1Q ) | |
| 24 | 22 23 | ax-mp | ⊢ ( [Q] ‘ 1Q ) = 1Q |
| 25 | 24 | eqcomi | ⊢ 1Q = ( [Q] ‘ 1Q ) |
| 26 | addpqnq | ⊢ ( ( 1Q ∈ Q ∧ 1Q ∈ Q ) → ( 1Q +Q 1Q ) = ( [Q] ‘ ( 1Q +pQ 1Q ) ) ) | |
| 27 | 22 22 26 | mp2an | ⊢ ( 1Q +Q 1Q ) = ( [Q] ‘ ( 1Q +pQ 1Q ) ) |
| 28 | 21 25 27 | 3brtr4i | ⊢ 1Q <Q ( 1Q +Q 1Q ) |