This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Ordering of positive fractions in terms of positive integers. (Contributed by Mario Carneiro, 8-May-2013) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | ordpipq | ⊢ ( 〈 𝐴 , 𝐵 〉 <pQ 〈 𝐶 , 𝐷 〉 ↔ ( 𝐴 ·N 𝐷 ) <N ( 𝐶 ·N 𝐵 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | opex | ⊢ 〈 𝐴 , 𝐵 〉 ∈ V | |
| 2 | opex | ⊢ 〈 𝐶 , 𝐷 〉 ∈ V | |
| 3 | eleq1 | ⊢ ( 𝑥 = 〈 𝐴 , 𝐵 〉 → ( 𝑥 ∈ ( N × N ) ↔ 〈 𝐴 , 𝐵 〉 ∈ ( N × N ) ) ) | |
| 4 | 3 | anbi1d | ⊢ ( 𝑥 = 〈 𝐴 , 𝐵 〉 → ( ( 𝑥 ∈ ( N × N ) ∧ 𝑦 ∈ ( N × N ) ) ↔ ( 〈 𝐴 , 𝐵 〉 ∈ ( N × N ) ∧ 𝑦 ∈ ( N × N ) ) ) ) |
| 5 | 4 | anbi1d | ⊢ ( 𝑥 = 〈 𝐴 , 𝐵 〉 → ( ( ( 𝑥 ∈ ( N × N ) ∧ 𝑦 ∈ ( N × N ) ) ∧ ( ( 1st ‘ 𝑥 ) ·N ( 2nd ‘ 𝑦 ) ) <N ( ( 1st ‘ 𝑦 ) ·N ( 2nd ‘ 𝑥 ) ) ) ↔ ( ( 〈 𝐴 , 𝐵 〉 ∈ ( N × N ) ∧ 𝑦 ∈ ( N × N ) ) ∧ ( ( 1st ‘ 𝑥 ) ·N ( 2nd ‘ 𝑦 ) ) <N ( ( 1st ‘ 𝑦 ) ·N ( 2nd ‘ 𝑥 ) ) ) ) ) |
| 6 | fveq2 | ⊢ ( 𝑥 = 〈 𝐴 , 𝐵 〉 → ( 1st ‘ 𝑥 ) = ( 1st ‘ 〈 𝐴 , 𝐵 〉 ) ) | |
| 7 | opelxp | ⊢ ( 〈 𝐴 , 𝐵 〉 ∈ ( N × N ) ↔ ( 𝐴 ∈ N ∧ 𝐵 ∈ N ) ) | |
| 8 | op1stg | ⊢ ( ( 𝐴 ∈ N ∧ 𝐵 ∈ N ) → ( 1st ‘ 〈 𝐴 , 𝐵 〉 ) = 𝐴 ) | |
| 9 | 7 8 | sylbi | ⊢ ( 〈 𝐴 , 𝐵 〉 ∈ ( N × N ) → ( 1st ‘ 〈 𝐴 , 𝐵 〉 ) = 𝐴 ) |
| 10 | 9 | adantr | ⊢ ( ( 〈 𝐴 , 𝐵 〉 ∈ ( N × N ) ∧ 𝑦 ∈ ( N × N ) ) → ( 1st ‘ 〈 𝐴 , 𝐵 〉 ) = 𝐴 ) |
| 11 | 6 10 | sylan9eq | ⊢ ( ( 𝑥 = 〈 𝐴 , 𝐵 〉 ∧ ( 〈 𝐴 , 𝐵 〉 ∈ ( N × N ) ∧ 𝑦 ∈ ( N × N ) ) ) → ( 1st ‘ 𝑥 ) = 𝐴 ) |
| 12 | 11 | oveq1d | ⊢ ( ( 𝑥 = 〈 𝐴 , 𝐵 〉 ∧ ( 〈 𝐴 , 𝐵 〉 ∈ ( N × N ) ∧ 𝑦 ∈ ( N × N ) ) ) → ( ( 1st ‘ 𝑥 ) ·N ( 2nd ‘ 𝑦 ) ) = ( 𝐴 ·N ( 2nd ‘ 𝑦 ) ) ) |
| 13 | fveq2 | ⊢ ( 𝑥 = 〈 𝐴 , 𝐵 〉 → ( 2nd ‘ 𝑥 ) = ( 2nd ‘ 〈 𝐴 , 𝐵 〉 ) ) | |
| 14 | op2ndg | ⊢ ( ( 𝐴 ∈ N ∧ 𝐵 ∈ N ) → ( 2nd ‘ 〈 𝐴 , 𝐵 〉 ) = 𝐵 ) | |
| 15 | 7 14 | sylbi | ⊢ ( 〈 𝐴 , 𝐵 〉 ∈ ( N × N ) → ( 2nd ‘ 〈 𝐴 , 𝐵 〉 ) = 𝐵 ) |
| 16 | 15 | adantr | ⊢ ( ( 〈 𝐴 , 𝐵 〉 ∈ ( N × N ) ∧ 𝑦 ∈ ( N × N ) ) → ( 2nd ‘ 〈 𝐴 , 𝐵 〉 ) = 𝐵 ) |
| 17 | 13 16 | sylan9eq | ⊢ ( ( 𝑥 = 〈 𝐴 , 𝐵 〉 ∧ ( 〈 𝐴 , 𝐵 〉 ∈ ( N × N ) ∧ 𝑦 ∈ ( N × N ) ) ) → ( 2nd ‘ 𝑥 ) = 𝐵 ) |
| 18 | 17 | oveq2d | ⊢ ( ( 𝑥 = 〈 𝐴 , 𝐵 〉 ∧ ( 〈 𝐴 , 𝐵 〉 ∈ ( N × N ) ∧ 𝑦 ∈ ( N × N ) ) ) → ( ( 1st ‘ 𝑦 ) ·N ( 2nd ‘ 𝑥 ) ) = ( ( 1st ‘ 𝑦 ) ·N 𝐵 ) ) |
| 19 | 12 18 | breq12d | ⊢ ( ( 𝑥 = 〈 𝐴 , 𝐵 〉 ∧ ( 〈 𝐴 , 𝐵 〉 ∈ ( N × N ) ∧ 𝑦 ∈ ( N × N ) ) ) → ( ( ( 1st ‘ 𝑥 ) ·N ( 2nd ‘ 𝑦 ) ) <N ( ( 1st ‘ 𝑦 ) ·N ( 2nd ‘ 𝑥 ) ) ↔ ( 𝐴 ·N ( 2nd ‘ 𝑦 ) ) <N ( ( 1st ‘ 𝑦 ) ·N 𝐵 ) ) ) |
| 20 | 19 | pm5.32da | ⊢ ( 𝑥 = 〈 𝐴 , 𝐵 〉 → ( ( ( 〈 𝐴 , 𝐵 〉 ∈ ( N × N ) ∧ 𝑦 ∈ ( N × N ) ) ∧ ( ( 1st ‘ 𝑥 ) ·N ( 2nd ‘ 𝑦 ) ) <N ( ( 1st ‘ 𝑦 ) ·N ( 2nd ‘ 𝑥 ) ) ) ↔ ( ( 〈 𝐴 , 𝐵 〉 ∈ ( N × N ) ∧ 𝑦 ∈ ( N × N ) ) ∧ ( 𝐴 ·N ( 2nd ‘ 𝑦 ) ) <N ( ( 1st ‘ 𝑦 ) ·N 𝐵 ) ) ) ) |
| 21 | 5 20 | bitrd | ⊢ ( 𝑥 = 〈 𝐴 , 𝐵 〉 → ( ( ( 𝑥 ∈ ( N × N ) ∧ 𝑦 ∈ ( N × N ) ) ∧ ( ( 1st ‘ 𝑥 ) ·N ( 2nd ‘ 𝑦 ) ) <N ( ( 1st ‘ 𝑦 ) ·N ( 2nd ‘ 𝑥 ) ) ) ↔ ( ( 〈 𝐴 , 𝐵 〉 ∈ ( N × N ) ∧ 𝑦 ∈ ( N × N ) ) ∧ ( 𝐴 ·N ( 2nd ‘ 𝑦 ) ) <N ( ( 1st ‘ 𝑦 ) ·N 𝐵 ) ) ) ) |
| 22 | eleq1 | ⊢ ( 𝑦 = 〈 𝐶 , 𝐷 〉 → ( 𝑦 ∈ ( N × N ) ↔ 〈 𝐶 , 𝐷 〉 ∈ ( N × N ) ) ) | |
| 23 | 22 | anbi2d | ⊢ ( 𝑦 = 〈 𝐶 , 𝐷 〉 → ( ( 〈 𝐴 , 𝐵 〉 ∈ ( N × N ) ∧ 𝑦 ∈ ( N × N ) ) ↔ ( 〈 𝐴 , 𝐵 〉 ∈ ( N × N ) ∧ 〈 𝐶 , 𝐷 〉 ∈ ( N × N ) ) ) ) |
| 24 | 23 | anbi1d | ⊢ ( 𝑦 = 〈 𝐶 , 𝐷 〉 → ( ( ( 〈 𝐴 , 𝐵 〉 ∈ ( N × N ) ∧ 𝑦 ∈ ( N × N ) ) ∧ ( 𝐴 ·N ( 2nd ‘ 𝑦 ) ) <N ( ( 1st ‘ 𝑦 ) ·N 𝐵 ) ) ↔ ( ( 〈 𝐴 , 𝐵 〉 ∈ ( N × N ) ∧ 〈 𝐶 , 𝐷 〉 ∈ ( N × N ) ) ∧ ( 𝐴 ·N ( 2nd ‘ 𝑦 ) ) <N ( ( 1st ‘ 𝑦 ) ·N 𝐵 ) ) ) ) |
| 25 | fveq2 | ⊢ ( 𝑦 = 〈 𝐶 , 𝐷 〉 → ( 2nd ‘ 𝑦 ) = ( 2nd ‘ 〈 𝐶 , 𝐷 〉 ) ) | |
| 26 | opelxp | ⊢ ( 〈 𝐶 , 𝐷 〉 ∈ ( N × N ) ↔ ( 𝐶 ∈ N ∧ 𝐷 ∈ N ) ) | |
| 27 | op2ndg | ⊢ ( ( 𝐶 ∈ N ∧ 𝐷 ∈ N ) → ( 2nd ‘ 〈 𝐶 , 𝐷 〉 ) = 𝐷 ) | |
| 28 | 26 27 | sylbi | ⊢ ( 〈 𝐶 , 𝐷 〉 ∈ ( N × N ) → ( 2nd ‘ 〈 𝐶 , 𝐷 〉 ) = 𝐷 ) |
| 29 | 28 | adantl | ⊢ ( ( 〈 𝐴 , 𝐵 〉 ∈ ( N × N ) ∧ 〈 𝐶 , 𝐷 〉 ∈ ( N × N ) ) → ( 2nd ‘ 〈 𝐶 , 𝐷 〉 ) = 𝐷 ) |
| 30 | 25 29 | sylan9eq | ⊢ ( ( 𝑦 = 〈 𝐶 , 𝐷 〉 ∧ ( 〈 𝐴 , 𝐵 〉 ∈ ( N × N ) ∧ 〈 𝐶 , 𝐷 〉 ∈ ( N × N ) ) ) → ( 2nd ‘ 𝑦 ) = 𝐷 ) |
| 31 | 30 | oveq2d | ⊢ ( ( 𝑦 = 〈 𝐶 , 𝐷 〉 ∧ ( 〈 𝐴 , 𝐵 〉 ∈ ( N × N ) ∧ 〈 𝐶 , 𝐷 〉 ∈ ( N × N ) ) ) → ( 𝐴 ·N ( 2nd ‘ 𝑦 ) ) = ( 𝐴 ·N 𝐷 ) ) |
| 32 | fveq2 | ⊢ ( 𝑦 = 〈 𝐶 , 𝐷 〉 → ( 1st ‘ 𝑦 ) = ( 1st ‘ 〈 𝐶 , 𝐷 〉 ) ) | |
| 33 | op1stg | ⊢ ( ( 𝐶 ∈ N ∧ 𝐷 ∈ N ) → ( 1st ‘ 〈 𝐶 , 𝐷 〉 ) = 𝐶 ) | |
| 34 | 26 33 | sylbi | ⊢ ( 〈 𝐶 , 𝐷 〉 ∈ ( N × N ) → ( 1st ‘ 〈 𝐶 , 𝐷 〉 ) = 𝐶 ) |
| 35 | 34 | adantl | ⊢ ( ( 〈 𝐴 , 𝐵 〉 ∈ ( N × N ) ∧ 〈 𝐶 , 𝐷 〉 ∈ ( N × N ) ) → ( 1st ‘ 〈 𝐶 , 𝐷 〉 ) = 𝐶 ) |
| 36 | 32 35 | sylan9eq | ⊢ ( ( 𝑦 = 〈 𝐶 , 𝐷 〉 ∧ ( 〈 𝐴 , 𝐵 〉 ∈ ( N × N ) ∧ 〈 𝐶 , 𝐷 〉 ∈ ( N × N ) ) ) → ( 1st ‘ 𝑦 ) = 𝐶 ) |
| 37 | 36 | oveq1d | ⊢ ( ( 𝑦 = 〈 𝐶 , 𝐷 〉 ∧ ( 〈 𝐴 , 𝐵 〉 ∈ ( N × N ) ∧ 〈 𝐶 , 𝐷 〉 ∈ ( N × N ) ) ) → ( ( 1st ‘ 𝑦 ) ·N 𝐵 ) = ( 𝐶 ·N 𝐵 ) ) |
| 38 | 31 37 | breq12d | ⊢ ( ( 𝑦 = 〈 𝐶 , 𝐷 〉 ∧ ( 〈 𝐴 , 𝐵 〉 ∈ ( N × N ) ∧ 〈 𝐶 , 𝐷 〉 ∈ ( N × N ) ) ) → ( ( 𝐴 ·N ( 2nd ‘ 𝑦 ) ) <N ( ( 1st ‘ 𝑦 ) ·N 𝐵 ) ↔ ( 𝐴 ·N 𝐷 ) <N ( 𝐶 ·N 𝐵 ) ) ) |
| 39 | 38 | pm5.32da | ⊢ ( 𝑦 = 〈 𝐶 , 𝐷 〉 → ( ( ( 〈 𝐴 , 𝐵 〉 ∈ ( N × N ) ∧ 〈 𝐶 , 𝐷 〉 ∈ ( N × N ) ) ∧ ( 𝐴 ·N ( 2nd ‘ 𝑦 ) ) <N ( ( 1st ‘ 𝑦 ) ·N 𝐵 ) ) ↔ ( ( 〈 𝐴 , 𝐵 〉 ∈ ( N × N ) ∧ 〈 𝐶 , 𝐷 〉 ∈ ( N × N ) ) ∧ ( 𝐴 ·N 𝐷 ) <N ( 𝐶 ·N 𝐵 ) ) ) ) |
| 40 | 24 39 | bitrd | ⊢ ( 𝑦 = 〈 𝐶 , 𝐷 〉 → ( ( ( 〈 𝐴 , 𝐵 〉 ∈ ( N × N ) ∧ 𝑦 ∈ ( N × N ) ) ∧ ( 𝐴 ·N ( 2nd ‘ 𝑦 ) ) <N ( ( 1st ‘ 𝑦 ) ·N 𝐵 ) ) ↔ ( ( 〈 𝐴 , 𝐵 〉 ∈ ( N × N ) ∧ 〈 𝐶 , 𝐷 〉 ∈ ( N × N ) ) ∧ ( 𝐴 ·N 𝐷 ) <N ( 𝐶 ·N 𝐵 ) ) ) ) |
| 41 | df-ltpq | ⊢ <pQ = { 〈 𝑥 , 𝑦 〉 ∣ ( ( 𝑥 ∈ ( N × N ) ∧ 𝑦 ∈ ( N × N ) ) ∧ ( ( 1st ‘ 𝑥 ) ·N ( 2nd ‘ 𝑦 ) ) <N ( ( 1st ‘ 𝑦 ) ·N ( 2nd ‘ 𝑥 ) ) ) } | |
| 42 | 1 2 21 40 41 | brab | ⊢ ( 〈 𝐴 , 𝐵 〉 <pQ 〈 𝐶 , 𝐷 〉 ↔ ( ( 〈 𝐴 , 𝐵 〉 ∈ ( N × N ) ∧ 〈 𝐶 , 𝐷 〉 ∈ ( N × N ) ) ∧ ( 𝐴 ·N 𝐷 ) <N ( 𝐶 ·N 𝐵 ) ) ) |
| 43 | simpr | ⊢ ( ( ( 〈 𝐴 , 𝐵 〉 ∈ ( N × N ) ∧ 〈 𝐶 , 𝐷 〉 ∈ ( N × N ) ) ∧ ( 𝐴 ·N 𝐷 ) <N ( 𝐶 ·N 𝐵 ) ) → ( 𝐴 ·N 𝐷 ) <N ( 𝐶 ·N 𝐵 ) ) | |
| 44 | ltrelpi | ⊢ <N ⊆ ( N × N ) | |
| 45 | 44 | brel | ⊢ ( ( 𝐴 ·N 𝐷 ) <N ( 𝐶 ·N 𝐵 ) → ( ( 𝐴 ·N 𝐷 ) ∈ N ∧ ( 𝐶 ·N 𝐵 ) ∈ N ) ) |
| 46 | dmmulpi | ⊢ dom ·N = ( N × N ) | |
| 47 | 0npi | ⊢ ¬ ∅ ∈ N | |
| 48 | 46 47 | ndmovrcl | ⊢ ( ( 𝐴 ·N 𝐷 ) ∈ N → ( 𝐴 ∈ N ∧ 𝐷 ∈ N ) ) |
| 49 | 46 47 | ndmovrcl | ⊢ ( ( 𝐶 ·N 𝐵 ) ∈ N → ( 𝐶 ∈ N ∧ 𝐵 ∈ N ) ) |
| 50 | 48 49 | anim12i | ⊢ ( ( ( 𝐴 ·N 𝐷 ) ∈ N ∧ ( 𝐶 ·N 𝐵 ) ∈ N ) → ( ( 𝐴 ∈ N ∧ 𝐷 ∈ N ) ∧ ( 𝐶 ∈ N ∧ 𝐵 ∈ N ) ) ) |
| 51 | opelxpi | ⊢ ( ( 𝐴 ∈ N ∧ 𝐵 ∈ N ) → 〈 𝐴 , 𝐵 〉 ∈ ( N × N ) ) | |
| 52 | 51 | ad2ant2rl | ⊢ ( ( ( 𝐴 ∈ N ∧ 𝐷 ∈ N ) ∧ ( 𝐶 ∈ N ∧ 𝐵 ∈ N ) ) → 〈 𝐴 , 𝐵 〉 ∈ ( N × N ) ) |
| 53 | simprl | ⊢ ( ( ( 𝐴 ∈ N ∧ 𝐷 ∈ N ) ∧ ( 𝐶 ∈ N ∧ 𝐵 ∈ N ) ) → 𝐶 ∈ N ) | |
| 54 | simplr | ⊢ ( ( ( 𝐴 ∈ N ∧ 𝐷 ∈ N ) ∧ ( 𝐶 ∈ N ∧ 𝐵 ∈ N ) ) → 𝐷 ∈ N ) | |
| 55 | 53 54 | opelxpd | ⊢ ( ( ( 𝐴 ∈ N ∧ 𝐷 ∈ N ) ∧ ( 𝐶 ∈ N ∧ 𝐵 ∈ N ) ) → 〈 𝐶 , 𝐷 〉 ∈ ( N × N ) ) |
| 56 | 52 55 | jca | ⊢ ( ( ( 𝐴 ∈ N ∧ 𝐷 ∈ N ) ∧ ( 𝐶 ∈ N ∧ 𝐵 ∈ N ) ) → ( 〈 𝐴 , 𝐵 〉 ∈ ( N × N ) ∧ 〈 𝐶 , 𝐷 〉 ∈ ( N × N ) ) ) |
| 57 | 45 50 56 | 3syl | ⊢ ( ( 𝐴 ·N 𝐷 ) <N ( 𝐶 ·N 𝐵 ) → ( 〈 𝐴 , 𝐵 〉 ∈ ( N × N ) ∧ 〈 𝐶 , 𝐷 〉 ∈ ( N × N ) ) ) |
| 58 | 57 | ancri | ⊢ ( ( 𝐴 ·N 𝐷 ) <N ( 𝐶 ·N 𝐵 ) → ( ( 〈 𝐴 , 𝐵 〉 ∈ ( N × N ) ∧ 〈 𝐶 , 𝐷 〉 ∈ ( N × N ) ) ∧ ( 𝐴 ·N 𝐷 ) <N ( 𝐶 ·N 𝐵 ) ) ) |
| 59 | 43 58 | impbii | ⊢ ( ( ( 〈 𝐴 , 𝐵 〉 ∈ ( N × N ) ∧ 〈 𝐶 , 𝐷 〉 ∈ ( N × N ) ) ∧ ( 𝐴 ·N 𝐷 ) <N ( 𝐶 ·N 𝐵 ) ) ↔ ( 𝐴 ·N 𝐷 ) <N ( 𝐶 ·N 𝐵 ) ) |
| 60 | 42 59 | bitri | ⊢ ( 〈 𝐴 , 𝐵 〉 <pQ 〈 𝐶 , 𝐷 〉 ↔ ( 𝐴 ·N 𝐷 ) <N ( 𝐶 ·N 𝐵 ) ) |