This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: One is less than two (one plus one). (Contributed by NM, 13-Mar-1996) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | 1lt2pi | ⊢ 1o <N ( 1o +N 1o ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 1onn | ⊢ 1o ∈ ω | |
| 2 | nna0 | ⊢ ( 1o ∈ ω → ( 1o +o ∅ ) = 1o ) | |
| 3 | 1 2 | ax-mp | ⊢ ( 1o +o ∅ ) = 1o |
| 4 | 0lt1o | ⊢ ∅ ∈ 1o | |
| 5 | peano1 | ⊢ ∅ ∈ ω | |
| 6 | nnaord | ⊢ ( ( ∅ ∈ ω ∧ 1o ∈ ω ∧ 1o ∈ ω ) → ( ∅ ∈ 1o ↔ ( 1o +o ∅ ) ∈ ( 1o +o 1o ) ) ) | |
| 7 | 5 1 1 6 | mp3an | ⊢ ( ∅ ∈ 1o ↔ ( 1o +o ∅ ) ∈ ( 1o +o 1o ) ) |
| 8 | 4 7 | mpbi | ⊢ ( 1o +o ∅ ) ∈ ( 1o +o 1o ) |
| 9 | 3 8 | eqeltrri | ⊢ 1o ∈ ( 1o +o 1o ) |
| 10 | 1pi | ⊢ 1o ∈ N | |
| 11 | addpiord | ⊢ ( ( 1o ∈ N ∧ 1o ∈ N ) → ( 1o +N 1o ) = ( 1o +o 1o ) ) | |
| 12 | 10 10 11 | mp2an | ⊢ ( 1o +N 1o ) = ( 1o +o 1o ) |
| 13 | 9 12 | eleqtrri | ⊢ 1o ∈ ( 1o +N 1o ) |
| 14 | addclpi | ⊢ ( ( 1o ∈ N ∧ 1o ∈ N ) → ( 1o +N 1o ) ∈ N ) | |
| 15 | 10 10 14 | mp2an | ⊢ ( 1o +N 1o ) ∈ N |
| 16 | ltpiord | ⊢ ( ( 1o ∈ N ∧ ( 1o +N 1o ) ∈ N ) → ( 1o <N ( 1o +N 1o ) ↔ 1o ∈ ( 1o +N 1o ) ) ) | |
| 17 | 10 15 16 | mp2an | ⊢ ( 1o <N ( 1o +N 1o ) ↔ 1o ∈ ( 1o +N 1o ) ) |
| 18 | 13 17 | mpbir | ⊢ 1o <N ( 1o +N 1o ) |