This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for p1evtxdeq and p1evtxdp1 . (Contributed by AV, 3-Mar-2021)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | p1evtxdeq.v | ⊢ 𝑉 = ( Vtx ‘ 𝐺 ) | |
| p1evtxdeq.i | ⊢ 𝐼 = ( iEdg ‘ 𝐺 ) | ||
| p1evtxdeq.f | ⊢ ( 𝜑 → Fun 𝐼 ) | ||
| p1evtxdeq.fv | ⊢ ( 𝜑 → ( Vtx ‘ 𝐹 ) = 𝑉 ) | ||
| p1evtxdeq.fi | ⊢ ( 𝜑 → ( iEdg ‘ 𝐹 ) = ( 𝐼 ∪ { 〈 𝐾 , 𝐸 〉 } ) ) | ||
| p1evtxdeq.k | ⊢ ( 𝜑 → 𝐾 ∈ 𝑋 ) | ||
| p1evtxdeq.d | ⊢ ( 𝜑 → 𝐾 ∉ dom 𝐼 ) | ||
| p1evtxdeq.u | ⊢ ( 𝜑 → 𝑈 ∈ 𝑉 ) | ||
| p1evtxdeq.e | ⊢ ( 𝜑 → 𝐸 ∈ 𝑌 ) | ||
| Assertion | p1evtxdeqlem | ⊢ ( 𝜑 → ( ( VtxDeg ‘ 𝐹 ) ‘ 𝑈 ) = ( ( ( VtxDeg ‘ 𝐺 ) ‘ 𝑈 ) +𝑒 ( ( VtxDeg ‘ 〈 𝑉 , { 〈 𝐾 , 𝐸 〉 } 〉 ) ‘ 𝑈 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | p1evtxdeq.v | ⊢ 𝑉 = ( Vtx ‘ 𝐺 ) | |
| 2 | p1evtxdeq.i | ⊢ 𝐼 = ( iEdg ‘ 𝐺 ) | |
| 3 | p1evtxdeq.f | ⊢ ( 𝜑 → Fun 𝐼 ) | |
| 4 | p1evtxdeq.fv | ⊢ ( 𝜑 → ( Vtx ‘ 𝐹 ) = 𝑉 ) | |
| 5 | p1evtxdeq.fi | ⊢ ( 𝜑 → ( iEdg ‘ 𝐹 ) = ( 𝐼 ∪ { 〈 𝐾 , 𝐸 〉 } ) ) | |
| 6 | p1evtxdeq.k | ⊢ ( 𝜑 → 𝐾 ∈ 𝑋 ) | |
| 7 | p1evtxdeq.d | ⊢ ( 𝜑 → 𝐾 ∉ dom 𝐼 ) | |
| 8 | p1evtxdeq.u | ⊢ ( 𝜑 → 𝑈 ∈ 𝑉 ) | |
| 9 | p1evtxdeq.e | ⊢ ( 𝜑 → 𝐸 ∈ 𝑌 ) | |
| 10 | 1 | fvexi | ⊢ 𝑉 ∈ V |
| 11 | snex | ⊢ { 〈 𝐾 , 𝐸 〉 } ∈ V | |
| 12 | 10 11 | pm3.2i | ⊢ ( 𝑉 ∈ V ∧ { 〈 𝐾 , 𝐸 〉 } ∈ V ) |
| 13 | opiedgfv | ⊢ ( ( 𝑉 ∈ V ∧ { 〈 𝐾 , 𝐸 〉 } ∈ V ) → ( iEdg ‘ 〈 𝑉 , { 〈 𝐾 , 𝐸 〉 } 〉 ) = { 〈 𝐾 , 𝐸 〉 } ) | |
| 14 | 13 | eqcomd | ⊢ ( ( 𝑉 ∈ V ∧ { 〈 𝐾 , 𝐸 〉 } ∈ V ) → { 〈 𝐾 , 𝐸 〉 } = ( iEdg ‘ 〈 𝑉 , { 〈 𝐾 , 𝐸 〉 } 〉 ) ) |
| 15 | 12 14 | ax-mp | ⊢ { 〈 𝐾 , 𝐸 〉 } = ( iEdg ‘ 〈 𝑉 , { 〈 𝐾 , 𝐸 〉 } 〉 ) |
| 16 | opvtxfv | ⊢ ( ( 𝑉 ∈ V ∧ { 〈 𝐾 , 𝐸 〉 } ∈ V ) → ( Vtx ‘ 〈 𝑉 , { 〈 𝐾 , 𝐸 〉 } 〉 ) = 𝑉 ) | |
| 17 | 12 16 | mp1i | ⊢ ( 𝜑 → ( Vtx ‘ 〈 𝑉 , { 〈 𝐾 , 𝐸 〉 } 〉 ) = 𝑉 ) |
| 18 | dmsnopg | ⊢ ( 𝐸 ∈ 𝑌 → dom { 〈 𝐾 , 𝐸 〉 } = { 𝐾 } ) | |
| 19 | 9 18 | syl | ⊢ ( 𝜑 → dom { 〈 𝐾 , 𝐸 〉 } = { 𝐾 } ) |
| 20 | 19 | ineq2d | ⊢ ( 𝜑 → ( dom 𝐼 ∩ dom { 〈 𝐾 , 𝐸 〉 } ) = ( dom 𝐼 ∩ { 𝐾 } ) ) |
| 21 | df-nel | ⊢ ( 𝐾 ∉ dom 𝐼 ↔ ¬ 𝐾 ∈ dom 𝐼 ) | |
| 22 | 7 21 | sylib | ⊢ ( 𝜑 → ¬ 𝐾 ∈ dom 𝐼 ) |
| 23 | disjsn | ⊢ ( ( dom 𝐼 ∩ { 𝐾 } ) = ∅ ↔ ¬ 𝐾 ∈ dom 𝐼 ) | |
| 24 | 22 23 | sylibr | ⊢ ( 𝜑 → ( dom 𝐼 ∩ { 𝐾 } ) = ∅ ) |
| 25 | 20 24 | eqtrd | ⊢ ( 𝜑 → ( dom 𝐼 ∩ dom { 〈 𝐾 , 𝐸 〉 } ) = ∅ ) |
| 26 | funsng | ⊢ ( ( 𝐾 ∈ 𝑋 ∧ 𝐸 ∈ 𝑌 ) → Fun { 〈 𝐾 , 𝐸 〉 } ) | |
| 27 | 6 9 26 | syl2anc | ⊢ ( 𝜑 → Fun { 〈 𝐾 , 𝐸 〉 } ) |
| 28 | 2 15 1 17 4 25 3 27 8 5 | vtxdun | ⊢ ( 𝜑 → ( ( VtxDeg ‘ 𝐹 ) ‘ 𝑈 ) = ( ( ( VtxDeg ‘ 𝐺 ) ‘ 𝑈 ) +𝑒 ( ( VtxDeg ‘ 〈 𝑉 , { 〈 𝐾 , 𝐸 〉 } 〉 ) ‘ 𝑈 ) ) ) |