This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A pair of an empty set (of edges) and a second set (of vertices) is a trail iff the second set contains exactly one vertex. (Contributed by Alexander van der Vekens, 30-Oct-2017) (Revised by AV, 7-Jan-2021) (Revised by AV, 30-Oct-2021)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | 0wlk.v | ⊢ 𝑉 = ( Vtx ‘ 𝐺 ) | |
| Assertion | 0trl | ⊢ ( 𝐺 ∈ 𝑈 → ( ∅ ( Trails ‘ 𝐺 ) 𝑃 ↔ 𝑃 : ( 0 ... 0 ) ⟶ 𝑉 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 0wlk.v | ⊢ 𝑉 = ( Vtx ‘ 𝐺 ) | |
| 2 | 1 | 0wlk | ⊢ ( 𝐺 ∈ 𝑈 → ( ∅ ( Walks ‘ 𝐺 ) 𝑃 ↔ 𝑃 : ( 0 ... 0 ) ⟶ 𝑉 ) ) |
| 3 | 2 | anbi1d | ⊢ ( 𝐺 ∈ 𝑈 → ( ( ∅ ( Walks ‘ 𝐺 ) 𝑃 ∧ Fun ◡ ∅ ) ↔ ( 𝑃 : ( 0 ... 0 ) ⟶ 𝑉 ∧ Fun ◡ ∅ ) ) ) |
| 4 | istrl | ⊢ ( ∅ ( Trails ‘ 𝐺 ) 𝑃 ↔ ( ∅ ( Walks ‘ 𝐺 ) 𝑃 ∧ Fun ◡ ∅ ) ) | |
| 5 | funcnv0 | ⊢ Fun ◡ ∅ | |
| 6 | 5 | biantru | ⊢ ( 𝑃 : ( 0 ... 0 ) ⟶ 𝑉 ↔ ( 𝑃 : ( 0 ... 0 ) ⟶ 𝑉 ∧ Fun ◡ ∅ ) ) |
| 7 | 3 4 6 | 3bitr4g | ⊢ ( 𝐺 ∈ 𝑈 → ( ∅ ( Trails ‘ 𝐺 ) 𝑃 ↔ 𝑃 : ( 0 ... 0 ) ⟶ 𝑉 ) ) |