This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A trail of length 0 from a vertex to itself. (Contributed by Alexander van der Vekens, 2-Dec-2017) (Revised by AV, 8-Jan-2021) (Revised by AV, 23-Mar-2021) (Proof shortened by AV, 30-Oct-2021)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | 0wlk.v | |- V = ( Vtx ` G ) |
|
| Assertion | 0trlon | |- ( ( P : ( 0 ... 0 ) --> V /\ ( P ` 0 ) = N ) -> (/) ( N ( TrailsOn ` G ) N ) P ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 0wlk.v | |- V = ( Vtx ` G ) |
|
| 2 | 1 | 0wlkon | |- ( ( P : ( 0 ... 0 ) --> V /\ ( P ` 0 ) = N ) -> (/) ( N ( WalksOn ` G ) N ) P ) |
| 3 | simpl | |- ( ( P : ( 0 ... 0 ) --> V /\ ( P ` 0 ) = N ) -> P : ( 0 ... 0 ) --> V ) |
|
| 4 | 1 | 0wlkonlem1 | |- ( ( P : ( 0 ... 0 ) --> V /\ ( P ` 0 ) = N ) -> ( N e. V /\ N e. V ) ) |
| 5 | 1 | 1vgrex | |- ( N e. V -> G e. _V ) |
| 6 | 5 | adantr | |- ( ( N e. V /\ N e. V ) -> G e. _V ) |
| 7 | 1 | 0trl | |- ( G e. _V -> ( (/) ( Trails ` G ) P <-> P : ( 0 ... 0 ) --> V ) ) |
| 8 | 4 6 7 | 3syl | |- ( ( P : ( 0 ... 0 ) --> V /\ ( P ` 0 ) = N ) -> ( (/) ( Trails ` G ) P <-> P : ( 0 ... 0 ) --> V ) ) |
| 9 | 3 8 | mpbird | |- ( ( P : ( 0 ... 0 ) --> V /\ ( P ` 0 ) = N ) -> (/) ( Trails ` G ) P ) |
| 10 | 0ex | |- (/) e. _V |
|
| 11 | 10 | a1i | |- ( ( P : ( 0 ... 0 ) --> V /\ ( P ` 0 ) = N ) -> (/) e. _V ) |
| 12 | 1 | 0wlkonlem2 | |- ( ( P : ( 0 ... 0 ) --> V /\ ( P ` 0 ) = N ) -> P e. ( V ^pm ( 0 ... 0 ) ) ) |
| 13 | 1 | istrlson | |- ( ( ( N e. V /\ N e. V ) /\ ( (/) e. _V /\ P e. ( V ^pm ( 0 ... 0 ) ) ) ) -> ( (/) ( N ( TrailsOn ` G ) N ) P <-> ( (/) ( N ( WalksOn ` G ) N ) P /\ (/) ( Trails ` G ) P ) ) ) |
| 14 | 4 11 12 13 | syl12anc | |- ( ( P : ( 0 ... 0 ) --> V /\ ( P ` 0 ) = N ) -> ( (/) ( N ( TrailsOn ` G ) N ) P <-> ( (/) ( N ( WalksOn ` G ) N ) P /\ (/) ( Trails ` G ) P ) ) ) |
| 15 | 2 9 14 | mpbir2and | |- ( ( P : ( 0 ... 0 ) --> V /\ ( P ` 0 ) = N ) -> (/) ( N ( TrailsOn ` G ) N ) P ) |