This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Strict dominance over 0 is the same as dominance over 1. For a shorter proof requiring ax-un , see 0sdom1domALT . (Contributed by NM, 28-Sep-2004) Avoid ax-un . (Revised by BTernaryTau, 7-Dec-2024)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | 0sdom1dom |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | relsdom | ||
| 2 | 1 | brrelex2i | |
| 3 | reldom | ||
| 4 | 3 | brrelex2i | |
| 5 | 0sdomg | ||
| 6 | n0 | ||
| 7 | snssi | ||
| 8 | df1o2 | ||
| 9 | 0ex | ||
| 10 | vex | ||
| 11 | en2sn | ||
| 12 | 9 10 11 | mp2an | |
| 13 | 8 12 | eqbrtri | |
| 14 | endom | ||
| 15 | 13 14 | ax-mp | |
| 16 | domssr | ||
| 17 | 15 16 | mp3an3 | |
| 18 | 17 | ex | |
| 19 | 7 18 | syl5 | |
| 20 | 19 | exlimdv | |
| 21 | 6 20 | biimtrid | |
| 22 | 1n0 | ||
| 23 | dom0 | ||
| 24 | 22 23 | nemtbir | |
| 25 | breq2 | ||
| 26 | 24 25 | mtbiri | |
| 27 | 26 | necon2ai | |
| 28 | 21 27 | impbid1 | |
| 29 | 5 28 | bitrd | |
| 30 | 2 4 29 | pm5.21nii |