This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Alternate proof of 0sdom1dom , shorter but requiring ax-un . (Contributed by NM, 28-Sep-2004) (Proof modification is discouraged.) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | 0sdom1domALT | ⊢ ( ∅ ≺ 𝐴 ↔ 1o ≼ 𝐴 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | peano1 | ⊢ ∅ ∈ ω | |
| 2 | sucdom | ⊢ ( ∅ ∈ ω → ( ∅ ≺ 𝐴 ↔ suc ∅ ≼ 𝐴 ) ) | |
| 3 | 1 2 | ax-mp | ⊢ ( ∅ ≺ 𝐴 ↔ suc ∅ ≼ 𝐴 ) |
| 4 | df-1o | ⊢ 1o = suc ∅ | |
| 5 | 4 | breq1i | ⊢ ( 1o ≼ 𝐴 ↔ suc ∅ ≼ 𝐴 ) |
| 6 | 3 5 | bitr4i | ⊢ ( ∅ ≺ 𝐴 ↔ 1o ≼ 𝐴 ) |