This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: If C is a superset of B and B dominates A , then C also dominates A . (Contributed by BTernaryTau, 7-Dec-2024)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | domssr | ⊢ ( ( 𝐶 ∈ 𝑉 ∧ 𝐵 ⊆ 𝐶 ∧ 𝐴 ≼ 𝐵 ) → 𝐴 ≼ 𝐶 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | brdomi | ⊢ ( 𝐴 ≼ 𝐵 → ∃ 𝑓 𝑓 : 𝐴 –1-1→ 𝐵 ) | |
| 2 | 1 | 3ad2ant3 | ⊢ ( ( 𝐶 ∈ 𝑉 ∧ 𝐵 ⊆ 𝐶 ∧ 𝐴 ≼ 𝐵 ) → ∃ 𝑓 𝑓 : 𝐴 –1-1→ 𝐵 ) |
| 3 | simp2 | ⊢ ( ( 𝐶 ∈ 𝑉 ∧ 𝐵 ⊆ 𝐶 ∧ 𝐴 ≼ 𝐵 ) → 𝐵 ⊆ 𝐶 ) | |
| 4 | reldom | ⊢ Rel ≼ | |
| 5 | 4 | brrelex1i | ⊢ ( 𝐴 ≼ 𝐵 → 𝐴 ∈ V ) |
| 6 | 5 | 3ad2ant3 | ⊢ ( ( 𝐶 ∈ 𝑉 ∧ 𝐵 ⊆ 𝐶 ∧ 𝐴 ≼ 𝐵 ) → 𝐴 ∈ V ) |
| 7 | simp1 | ⊢ ( ( 𝐶 ∈ 𝑉 ∧ 𝐵 ⊆ 𝐶 ∧ 𝐴 ≼ 𝐵 ) → 𝐶 ∈ 𝑉 ) | |
| 8 | 3 6 7 | jca32 | ⊢ ( ( 𝐶 ∈ 𝑉 ∧ 𝐵 ⊆ 𝐶 ∧ 𝐴 ≼ 𝐵 ) → ( 𝐵 ⊆ 𝐶 ∧ ( 𝐴 ∈ V ∧ 𝐶 ∈ 𝑉 ) ) ) |
| 9 | f1ss | ⊢ ( ( 𝑓 : 𝐴 –1-1→ 𝐵 ∧ 𝐵 ⊆ 𝐶 ) → 𝑓 : 𝐴 –1-1→ 𝐶 ) | |
| 10 | vex | ⊢ 𝑓 ∈ V | |
| 11 | f1dom4g | ⊢ ( ( ( 𝑓 ∈ V ∧ 𝐴 ∈ V ∧ 𝐶 ∈ 𝑉 ) ∧ 𝑓 : 𝐴 –1-1→ 𝐶 ) → 𝐴 ≼ 𝐶 ) | |
| 12 | 10 11 | mp3anl1 | ⊢ ( ( ( 𝐴 ∈ V ∧ 𝐶 ∈ 𝑉 ) ∧ 𝑓 : 𝐴 –1-1→ 𝐶 ) → 𝐴 ≼ 𝐶 ) |
| 13 | 12 | ancoms | ⊢ ( ( 𝑓 : 𝐴 –1-1→ 𝐶 ∧ ( 𝐴 ∈ V ∧ 𝐶 ∈ 𝑉 ) ) → 𝐴 ≼ 𝐶 ) |
| 14 | 9 13 | sylan | ⊢ ( ( ( 𝑓 : 𝐴 –1-1→ 𝐵 ∧ 𝐵 ⊆ 𝐶 ) ∧ ( 𝐴 ∈ V ∧ 𝐶 ∈ 𝑉 ) ) → 𝐴 ≼ 𝐶 ) |
| 15 | 14 | expl | ⊢ ( 𝑓 : 𝐴 –1-1→ 𝐵 → ( ( 𝐵 ⊆ 𝐶 ∧ ( 𝐴 ∈ V ∧ 𝐶 ∈ 𝑉 ) ) → 𝐴 ≼ 𝐶 ) ) |
| 16 | 15 | exlimiv | ⊢ ( ∃ 𝑓 𝑓 : 𝐴 –1-1→ 𝐵 → ( ( 𝐵 ⊆ 𝐶 ∧ ( 𝐴 ∈ V ∧ 𝐶 ∈ 𝑉 ) ) → 𝐴 ≼ 𝐶 ) ) |
| 17 | 2 8 16 | sylc | ⊢ ( ( 𝐶 ∈ 𝑉 ∧ 𝐵 ⊆ 𝐶 ∧ 𝐴 ≼ 𝐵 ) → 𝐴 ≼ 𝐶 ) |