This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A zero ring is a ring which is not a nonzero ring. (Contributed by AV, 17-Apr-2020)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | 0ring.b | ⊢ 𝐵 = ( Base ‘ 𝑅 ) | |
| 0ring.0 | ⊢ 0 = ( 0g ‘ 𝑅 ) | ||
| Assertion | 0ringdif | ⊢ ( 𝑅 ∈ ( Ring ∖ NzRing ) ↔ ( 𝑅 ∈ Ring ∧ 𝐵 = { 0 } ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 0ring.b | ⊢ 𝐵 = ( Base ‘ 𝑅 ) | |
| 2 | 0ring.0 | ⊢ 0 = ( 0g ‘ 𝑅 ) | |
| 3 | eldif | ⊢ ( 𝑅 ∈ ( Ring ∖ NzRing ) ↔ ( 𝑅 ∈ Ring ∧ ¬ 𝑅 ∈ NzRing ) ) | |
| 4 | 1 | a1i | ⊢ ( 𝑅 ∈ Ring → 𝐵 = ( Base ‘ 𝑅 ) ) |
| 5 | 4 | fveqeq2d | ⊢ ( 𝑅 ∈ Ring → ( ( ♯ ‘ 𝐵 ) = 1 ↔ ( ♯ ‘ ( Base ‘ 𝑅 ) ) = 1 ) ) |
| 6 | 1 2 | 0ring | ⊢ ( ( 𝑅 ∈ Ring ∧ ( ♯ ‘ 𝐵 ) = 1 ) → 𝐵 = { 0 } ) |
| 7 | 6 | ex | ⊢ ( 𝑅 ∈ Ring → ( ( ♯ ‘ 𝐵 ) = 1 → 𝐵 = { 0 } ) ) |
| 8 | fveq2 | ⊢ ( 𝐵 = { 0 } → ( ♯ ‘ 𝐵 ) = ( ♯ ‘ { 0 } ) ) | |
| 9 | 2 | fvexi | ⊢ 0 ∈ V |
| 10 | hashsng | ⊢ ( 0 ∈ V → ( ♯ ‘ { 0 } ) = 1 ) | |
| 11 | 9 10 | ax-mp | ⊢ ( ♯ ‘ { 0 } ) = 1 |
| 12 | 8 11 | eqtrdi | ⊢ ( 𝐵 = { 0 } → ( ♯ ‘ 𝐵 ) = 1 ) |
| 13 | 7 12 | impbid1 | ⊢ ( 𝑅 ∈ Ring → ( ( ♯ ‘ 𝐵 ) = 1 ↔ 𝐵 = { 0 } ) ) |
| 14 | 0ringnnzr | ⊢ ( 𝑅 ∈ Ring → ( ( ♯ ‘ ( Base ‘ 𝑅 ) ) = 1 ↔ ¬ 𝑅 ∈ NzRing ) ) | |
| 15 | 5 13 14 | 3bitr3rd | ⊢ ( 𝑅 ∈ Ring → ( ¬ 𝑅 ∈ NzRing ↔ 𝐵 = { 0 } ) ) |
| 16 | 15 | pm5.32i | ⊢ ( ( 𝑅 ∈ Ring ∧ ¬ 𝑅 ∈ NzRing ) ↔ ( 𝑅 ∈ Ring ∧ 𝐵 = { 0 } ) ) |
| 17 | 3 16 | bitri | ⊢ ( 𝑅 ∈ ( Ring ∖ NzRing ) ↔ ( 𝑅 ∈ Ring ∧ 𝐵 = { 0 } ) ) |