This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A zero ring is a ring which is not a nonzero ring. (Contributed by AV, 17-Apr-2020)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | 0ring.b | |- B = ( Base ` R ) |
|
| 0ring.0 | |- .0. = ( 0g ` R ) |
||
| Assertion | 0ringdif | |- ( R e. ( Ring \ NzRing ) <-> ( R e. Ring /\ B = { .0. } ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 0ring.b | |- B = ( Base ` R ) |
|
| 2 | 0ring.0 | |- .0. = ( 0g ` R ) |
|
| 3 | eldif | |- ( R e. ( Ring \ NzRing ) <-> ( R e. Ring /\ -. R e. NzRing ) ) |
|
| 4 | 1 | a1i | |- ( R e. Ring -> B = ( Base ` R ) ) |
| 5 | 4 | fveqeq2d | |- ( R e. Ring -> ( ( # ` B ) = 1 <-> ( # ` ( Base ` R ) ) = 1 ) ) |
| 6 | 1 2 | 0ring | |- ( ( R e. Ring /\ ( # ` B ) = 1 ) -> B = { .0. } ) |
| 7 | 6 | ex | |- ( R e. Ring -> ( ( # ` B ) = 1 -> B = { .0. } ) ) |
| 8 | fveq2 | |- ( B = { .0. } -> ( # ` B ) = ( # ` { .0. } ) ) |
|
| 9 | 2 | fvexi | |- .0. e. _V |
| 10 | hashsng | |- ( .0. e. _V -> ( # ` { .0. } ) = 1 ) |
|
| 11 | 9 10 | ax-mp | |- ( # ` { .0. } ) = 1 |
| 12 | 8 11 | eqtrdi | |- ( B = { .0. } -> ( # ` B ) = 1 ) |
| 13 | 7 12 | impbid1 | |- ( R e. Ring -> ( ( # ` B ) = 1 <-> B = { .0. } ) ) |
| 14 | 0ringnnzr | |- ( R e. Ring -> ( ( # ` ( Base ` R ) ) = 1 <-> -. R e. NzRing ) ) |
|
| 15 | 5 13 14 | 3bitr3rd | |- ( R e. Ring -> ( -. R e. NzRing <-> B = { .0. } ) ) |
| 16 | 15 | pm5.32i | |- ( ( R e. Ring /\ -. R e. NzRing ) <-> ( R e. Ring /\ B = { .0. } ) ) |
| 17 | 3 16 | bitri | |- ( R e. ( Ring \ NzRing ) <-> ( R e. Ring /\ B = { .0. } ) ) |