This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A zero ring is a ring which is not a nonzero ring. (Contributed by AV, 17-Apr-2020)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | 0ring.b | ||
| 0ring.0 | |||
| Assertion | 0ringdif |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 0ring.b | ||
| 2 | 0ring.0 | ||
| 3 | eldif | ||
| 4 | 1 | a1i | |
| 5 | 4 | fveqeq2d | |
| 6 | 1 2 | 0ring | |
| 7 | 6 | ex | |
| 8 | fveq2 | ||
| 9 | 2 | fvexi | |
| 10 | hashsng | ||
| 11 | 9 10 | ax-mp | |
| 12 | 8 11 | eqtrdi | |
| 13 | 7 12 | impbid1 | |
| 14 | 0ringnnzr | ||
| 15 | 5 13 14 | 3bitr3rd | |
| 16 | 15 | pm5.32i | |
| 17 | 3 16 | bitri |