This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The constant zero linear function between two monoids. (Contributed by Stefan O'Rear, 5-Sep-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | 0mhm.z | ⊢ 0 = ( 0g ‘ 𝑁 ) | |
| 0mhm.b | ⊢ 𝐵 = ( Base ‘ 𝑀 ) | ||
| Assertion | 0mhm | ⊢ ( ( 𝑀 ∈ Mnd ∧ 𝑁 ∈ Mnd ) → ( 𝐵 × { 0 } ) ∈ ( 𝑀 MndHom 𝑁 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 0mhm.z | ⊢ 0 = ( 0g ‘ 𝑁 ) | |
| 2 | 0mhm.b | ⊢ 𝐵 = ( Base ‘ 𝑀 ) | |
| 3 | id | ⊢ ( ( 𝑀 ∈ Mnd ∧ 𝑁 ∈ Mnd ) → ( 𝑀 ∈ Mnd ∧ 𝑁 ∈ Mnd ) ) | |
| 4 | eqid | ⊢ ( Base ‘ 𝑁 ) = ( Base ‘ 𝑁 ) | |
| 5 | 4 1 | mndidcl | ⊢ ( 𝑁 ∈ Mnd → 0 ∈ ( Base ‘ 𝑁 ) ) |
| 6 | 5 | adantl | ⊢ ( ( 𝑀 ∈ Mnd ∧ 𝑁 ∈ Mnd ) → 0 ∈ ( Base ‘ 𝑁 ) ) |
| 7 | fconst6g | ⊢ ( 0 ∈ ( Base ‘ 𝑁 ) → ( 𝐵 × { 0 } ) : 𝐵 ⟶ ( Base ‘ 𝑁 ) ) | |
| 8 | 6 7 | syl | ⊢ ( ( 𝑀 ∈ Mnd ∧ 𝑁 ∈ Mnd ) → ( 𝐵 × { 0 } ) : 𝐵 ⟶ ( Base ‘ 𝑁 ) ) |
| 9 | simpr | ⊢ ( ( 𝑀 ∈ Mnd ∧ 𝑁 ∈ Mnd ) → 𝑁 ∈ Mnd ) | |
| 10 | eqid | ⊢ ( +g ‘ 𝑁 ) = ( +g ‘ 𝑁 ) | |
| 11 | 4 10 1 | mndlid | ⊢ ( ( 𝑁 ∈ Mnd ∧ 0 ∈ ( Base ‘ 𝑁 ) ) → ( 0 ( +g ‘ 𝑁 ) 0 ) = 0 ) |
| 12 | 11 | eqcomd | ⊢ ( ( 𝑁 ∈ Mnd ∧ 0 ∈ ( Base ‘ 𝑁 ) ) → 0 = ( 0 ( +g ‘ 𝑁 ) 0 ) ) |
| 13 | 9 5 12 | syl2anc2 | ⊢ ( ( 𝑀 ∈ Mnd ∧ 𝑁 ∈ Mnd ) → 0 = ( 0 ( +g ‘ 𝑁 ) 0 ) ) |
| 14 | 13 | adantr | ⊢ ( ( ( 𝑀 ∈ Mnd ∧ 𝑁 ∈ Mnd ) ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → 0 = ( 0 ( +g ‘ 𝑁 ) 0 ) ) |
| 15 | eqid | ⊢ ( +g ‘ 𝑀 ) = ( +g ‘ 𝑀 ) | |
| 16 | 2 15 | mndcl | ⊢ ( ( 𝑀 ∈ Mnd ∧ 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) → ( 𝑥 ( +g ‘ 𝑀 ) 𝑦 ) ∈ 𝐵 ) |
| 17 | 16 | 3expb | ⊢ ( ( 𝑀 ∈ Mnd ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → ( 𝑥 ( +g ‘ 𝑀 ) 𝑦 ) ∈ 𝐵 ) |
| 18 | 17 | adantlr | ⊢ ( ( ( 𝑀 ∈ Mnd ∧ 𝑁 ∈ Mnd ) ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → ( 𝑥 ( +g ‘ 𝑀 ) 𝑦 ) ∈ 𝐵 ) |
| 19 | 1 | fvexi | ⊢ 0 ∈ V |
| 20 | 19 | fvconst2 | ⊢ ( ( 𝑥 ( +g ‘ 𝑀 ) 𝑦 ) ∈ 𝐵 → ( ( 𝐵 × { 0 } ) ‘ ( 𝑥 ( +g ‘ 𝑀 ) 𝑦 ) ) = 0 ) |
| 21 | 18 20 | syl | ⊢ ( ( ( 𝑀 ∈ Mnd ∧ 𝑁 ∈ Mnd ) ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → ( ( 𝐵 × { 0 } ) ‘ ( 𝑥 ( +g ‘ 𝑀 ) 𝑦 ) ) = 0 ) |
| 22 | 19 | fvconst2 | ⊢ ( 𝑥 ∈ 𝐵 → ( ( 𝐵 × { 0 } ) ‘ 𝑥 ) = 0 ) |
| 23 | 19 | fvconst2 | ⊢ ( 𝑦 ∈ 𝐵 → ( ( 𝐵 × { 0 } ) ‘ 𝑦 ) = 0 ) |
| 24 | 22 23 | oveqan12d | ⊢ ( ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) → ( ( ( 𝐵 × { 0 } ) ‘ 𝑥 ) ( +g ‘ 𝑁 ) ( ( 𝐵 × { 0 } ) ‘ 𝑦 ) ) = ( 0 ( +g ‘ 𝑁 ) 0 ) ) |
| 25 | 24 | adantl | ⊢ ( ( ( 𝑀 ∈ Mnd ∧ 𝑁 ∈ Mnd ) ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → ( ( ( 𝐵 × { 0 } ) ‘ 𝑥 ) ( +g ‘ 𝑁 ) ( ( 𝐵 × { 0 } ) ‘ 𝑦 ) ) = ( 0 ( +g ‘ 𝑁 ) 0 ) ) |
| 26 | 14 21 25 | 3eqtr4d | ⊢ ( ( ( 𝑀 ∈ Mnd ∧ 𝑁 ∈ Mnd ) ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → ( ( 𝐵 × { 0 } ) ‘ ( 𝑥 ( +g ‘ 𝑀 ) 𝑦 ) ) = ( ( ( 𝐵 × { 0 } ) ‘ 𝑥 ) ( +g ‘ 𝑁 ) ( ( 𝐵 × { 0 } ) ‘ 𝑦 ) ) ) |
| 27 | 26 | ralrimivva | ⊢ ( ( 𝑀 ∈ Mnd ∧ 𝑁 ∈ Mnd ) → ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ( ( 𝐵 × { 0 } ) ‘ ( 𝑥 ( +g ‘ 𝑀 ) 𝑦 ) ) = ( ( ( 𝐵 × { 0 } ) ‘ 𝑥 ) ( +g ‘ 𝑁 ) ( ( 𝐵 × { 0 } ) ‘ 𝑦 ) ) ) |
| 28 | eqid | ⊢ ( 0g ‘ 𝑀 ) = ( 0g ‘ 𝑀 ) | |
| 29 | 2 28 | mndidcl | ⊢ ( 𝑀 ∈ Mnd → ( 0g ‘ 𝑀 ) ∈ 𝐵 ) |
| 30 | 29 | adantr | ⊢ ( ( 𝑀 ∈ Mnd ∧ 𝑁 ∈ Mnd ) → ( 0g ‘ 𝑀 ) ∈ 𝐵 ) |
| 31 | 19 | fvconst2 | ⊢ ( ( 0g ‘ 𝑀 ) ∈ 𝐵 → ( ( 𝐵 × { 0 } ) ‘ ( 0g ‘ 𝑀 ) ) = 0 ) |
| 32 | 30 31 | syl | ⊢ ( ( 𝑀 ∈ Mnd ∧ 𝑁 ∈ Mnd ) → ( ( 𝐵 × { 0 } ) ‘ ( 0g ‘ 𝑀 ) ) = 0 ) |
| 33 | 8 27 32 | 3jca | ⊢ ( ( 𝑀 ∈ Mnd ∧ 𝑁 ∈ Mnd ) → ( ( 𝐵 × { 0 } ) : 𝐵 ⟶ ( Base ‘ 𝑁 ) ∧ ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ( ( 𝐵 × { 0 } ) ‘ ( 𝑥 ( +g ‘ 𝑀 ) 𝑦 ) ) = ( ( ( 𝐵 × { 0 } ) ‘ 𝑥 ) ( +g ‘ 𝑁 ) ( ( 𝐵 × { 0 } ) ‘ 𝑦 ) ) ∧ ( ( 𝐵 × { 0 } ) ‘ ( 0g ‘ 𝑀 ) ) = 0 ) ) |
| 34 | 2 4 15 10 28 1 | ismhm | ⊢ ( ( 𝐵 × { 0 } ) ∈ ( 𝑀 MndHom 𝑁 ) ↔ ( ( 𝑀 ∈ Mnd ∧ 𝑁 ∈ Mnd ) ∧ ( ( 𝐵 × { 0 } ) : 𝐵 ⟶ ( Base ‘ 𝑁 ) ∧ ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ( ( 𝐵 × { 0 } ) ‘ ( 𝑥 ( +g ‘ 𝑀 ) 𝑦 ) ) = ( ( ( 𝐵 × { 0 } ) ‘ 𝑥 ) ( +g ‘ 𝑁 ) ( ( 𝐵 × { 0 } ) ‘ 𝑦 ) ) ∧ ( ( 𝐵 × { 0 } ) ‘ ( 0g ‘ 𝑀 ) ) = 0 ) ) ) |
| 35 | 3 33 34 | sylanbrc | ⊢ ( ( 𝑀 ∈ Mnd ∧ 𝑁 ∈ Mnd ) → ( 𝐵 × { 0 } ) ∈ ( 𝑀 MndHom 𝑁 ) ) |