This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The constant zero linear function between two monoids. (Contributed by Stefan O'Rear, 5-Sep-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | 0mhm.z | |- .0. = ( 0g ` N ) |
|
| 0mhm.b | |- B = ( Base ` M ) |
||
| Assertion | 0mhm | |- ( ( M e. Mnd /\ N e. Mnd ) -> ( B X. { .0. } ) e. ( M MndHom N ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 0mhm.z | |- .0. = ( 0g ` N ) |
|
| 2 | 0mhm.b | |- B = ( Base ` M ) |
|
| 3 | id | |- ( ( M e. Mnd /\ N e. Mnd ) -> ( M e. Mnd /\ N e. Mnd ) ) |
|
| 4 | eqid | |- ( Base ` N ) = ( Base ` N ) |
|
| 5 | 4 1 | mndidcl | |- ( N e. Mnd -> .0. e. ( Base ` N ) ) |
| 6 | 5 | adantl | |- ( ( M e. Mnd /\ N e. Mnd ) -> .0. e. ( Base ` N ) ) |
| 7 | fconst6g | |- ( .0. e. ( Base ` N ) -> ( B X. { .0. } ) : B --> ( Base ` N ) ) |
|
| 8 | 6 7 | syl | |- ( ( M e. Mnd /\ N e. Mnd ) -> ( B X. { .0. } ) : B --> ( Base ` N ) ) |
| 9 | simpr | |- ( ( M e. Mnd /\ N e. Mnd ) -> N e. Mnd ) |
|
| 10 | eqid | |- ( +g ` N ) = ( +g ` N ) |
|
| 11 | 4 10 1 | mndlid | |- ( ( N e. Mnd /\ .0. e. ( Base ` N ) ) -> ( .0. ( +g ` N ) .0. ) = .0. ) |
| 12 | 11 | eqcomd | |- ( ( N e. Mnd /\ .0. e. ( Base ` N ) ) -> .0. = ( .0. ( +g ` N ) .0. ) ) |
| 13 | 9 5 12 | syl2anc2 | |- ( ( M e. Mnd /\ N e. Mnd ) -> .0. = ( .0. ( +g ` N ) .0. ) ) |
| 14 | 13 | adantr | |- ( ( ( M e. Mnd /\ N e. Mnd ) /\ ( x e. B /\ y e. B ) ) -> .0. = ( .0. ( +g ` N ) .0. ) ) |
| 15 | eqid | |- ( +g ` M ) = ( +g ` M ) |
|
| 16 | 2 15 | mndcl | |- ( ( M e. Mnd /\ x e. B /\ y e. B ) -> ( x ( +g ` M ) y ) e. B ) |
| 17 | 16 | 3expb | |- ( ( M e. Mnd /\ ( x e. B /\ y e. B ) ) -> ( x ( +g ` M ) y ) e. B ) |
| 18 | 17 | adantlr | |- ( ( ( M e. Mnd /\ N e. Mnd ) /\ ( x e. B /\ y e. B ) ) -> ( x ( +g ` M ) y ) e. B ) |
| 19 | 1 | fvexi | |- .0. e. _V |
| 20 | 19 | fvconst2 | |- ( ( x ( +g ` M ) y ) e. B -> ( ( B X. { .0. } ) ` ( x ( +g ` M ) y ) ) = .0. ) |
| 21 | 18 20 | syl | |- ( ( ( M e. Mnd /\ N e. Mnd ) /\ ( x e. B /\ y e. B ) ) -> ( ( B X. { .0. } ) ` ( x ( +g ` M ) y ) ) = .0. ) |
| 22 | 19 | fvconst2 | |- ( x e. B -> ( ( B X. { .0. } ) ` x ) = .0. ) |
| 23 | 19 | fvconst2 | |- ( y e. B -> ( ( B X. { .0. } ) ` y ) = .0. ) |
| 24 | 22 23 | oveqan12d | |- ( ( x e. B /\ y e. B ) -> ( ( ( B X. { .0. } ) ` x ) ( +g ` N ) ( ( B X. { .0. } ) ` y ) ) = ( .0. ( +g ` N ) .0. ) ) |
| 25 | 24 | adantl | |- ( ( ( M e. Mnd /\ N e. Mnd ) /\ ( x e. B /\ y e. B ) ) -> ( ( ( B X. { .0. } ) ` x ) ( +g ` N ) ( ( B X. { .0. } ) ` y ) ) = ( .0. ( +g ` N ) .0. ) ) |
| 26 | 14 21 25 | 3eqtr4d | |- ( ( ( M e. Mnd /\ N e. Mnd ) /\ ( x e. B /\ y e. B ) ) -> ( ( B X. { .0. } ) ` ( x ( +g ` M ) y ) ) = ( ( ( B X. { .0. } ) ` x ) ( +g ` N ) ( ( B X. { .0. } ) ` y ) ) ) |
| 27 | 26 | ralrimivva | |- ( ( M e. Mnd /\ N e. Mnd ) -> A. x e. B A. y e. B ( ( B X. { .0. } ) ` ( x ( +g ` M ) y ) ) = ( ( ( B X. { .0. } ) ` x ) ( +g ` N ) ( ( B X. { .0. } ) ` y ) ) ) |
| 28 | eqid | |- ( 0g ` M ) = ( 0g ` M ) |
|
| 29 | 2 28 | mndidcl | |- ( M e. Mnd -> ( 0g ` M ) e. B ) |
| 30 | 29 | adantr | |- ( ( M e. Mnd /\ N e. Mnd ) -> ( 0g ` M ) e. B ) |
| 31 | 19 | fvconst2 | |- ( ( 0g ` M ) e. B -> ( ( B X. { .0. } ) ` ( 0g ` M ) ) = .0. ) |
| 32 | 30 31 | syl | |- ( ( M e. Mnd /\ N e. Mnd ) -> ( ( B X. { .0. } ) ` ( 0g ` M ) ) = .0. ) |
| 33 | 8 27 32 | 3jca | |- ( ( M e. Mnd /\ N e. Mnd ) -> ( ( B X. { .0. } ) : B --> ( Base ` N ) /\ A. x e. B A. y e. B ( ( B X. { .0. } ) ` ( x ( +g ` M ) y ) ) = ( ( ( B X. { .0. } ) ` x ) ( +g ` N ) ( ( B X. { .0. } ) ` y ) ) /\ ( ( B X. { .0. } ) ` ( 0g ` M ) ) = .0. ) ) |
| 34 | 2 4 15 10 28 1 | ismhm | |- ( ( B X. { .0. } ) e. ( M MndHom N ) <-> ( ( M e. Mnd /\ N e. Mnd ) /\ ( ( B X. { .0. } ) : B --> ( Base ` N ) /\ A. x e. B A. y e. B ( ( B X. { .0. } ) ` ( x ( +g ` M ) y ) ) = ( ( ( B X. { .0. } ) ` x ) ( +g ` N ) ( ( B X. { .0. } ) ` y ) ) /\ ( ( B X. { .0. } ) ` ( 0g ` M ) ) = .0. ) ) ) |
| 35 | 3 33 34 | sylanbrc | |- ( ( M e. Mnd /\ N e. Mnd ) -> ( B X. { .0. } ) e. ( M MndHom N ) ) |