This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The constant zero linear function between two modules. (Contributed by Stefan O'Rear, 5-Sep-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | 0lmhm.z | ⊢ 0 = ( 0g ‘ 𝑁 ) | |
| 0lmhm.b | ⊢ 𝐵 = ( Base ‘ 𝑀 ) | ||
| 0lmhm.s | ⊢ 𝑆 = ( Scalar ‘ 𝑀 ) | ||
| 0lmhm.t | ⊢ 𝑇 = ( Scalar ‘ 𝑁 ) | ||
| Assertion | 0lmhm | ⊢ ( ( 𝑀 ∈ LMod ∧ 𝑁 ∈ LMod ∧ 𝑆 = 𝑇 ) → ( 𝐵 × { 0 } ) ∈ ( 𝑀 LMHom 𝑁 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 0lmhm.z | ⊢ 0 = ( 0g ‘ 𝑁 ) | |
| 2 | 0lmhm.b | ⊢ 𝐵 = ( Base ‘ 𝑀 ) | |
| 3 | 0lmhm.s | ⊢ 𝑆 = ( Scalar ‘ 𝑀 ) | |
| 4 | 0lmhm.t | ⊢ 𝑇 = ( Scalar ‘ 𝑁 ) | |
| 5 | eqid | ⊢ ( ·𝑠 ‘ 𝑀 ) = ( ·𝑠 ‘ 𝑀 ) | |
| 6 | eqid | ⊢ ( ·𝑠 ‘ 𝑁 ) = ( ·𝑠 ‘ 𝑁 ) | |
| 7 | eqid | ⊢ ( Base ‘ 𝑆 ) = ( Base ‘ 𝑆 ) | |
| 8 | simp1 | ⊢ ( ( 𝑀 ∈ LMod ∧ 𝑁 ∈ LMod ∧ 𝑆 = 𝑇 ) → 𝑀 ∈ LMod ) | |
| 9 | simp2 | ⊢ ( ( 𝑀 ∈ LMod ∧ 𝑁 ∈ LMod ∧ 𝑆 = 𝑇 ) → 𝑁 ∈ LMod ) | |
| 10 | simp3 | ⊢ ( ( 𝑀 ∈ LMod ∧ 𝑁 ∈ LMod ∧ 𝑆 = 𝑇 ) → 𝑆 = 𝑇 ) | |
| 11 | 10 | eqcomd | ⊢ ( ( 𝑀 ∈ LMod ∧ 𝑁 ∈ LMod ∧ 𝑆 = 𝑇 ) → 𝑇 = 𝑆 ) |
| 12 | lmodgrp | ⊢ ( 𝑀 ∈ LMod → 𝑀 ∈ Grp ) | |
| 13 | lmodgrp | ⊢ ( 𝑁 ∈ LMod → 𝑁 ∈ Grp ) | |
| 14 | 1 2 | 0ghm | ⊢ ( ( 𝑀 ∈ Grp ∧ 𝑁 ∈ Grp ) → ( 𝐵 × { 0 } ) ∈ ( 𝑀 GrpHom 𝑁 ) ) |
| 15 | 12 13 14 | syl2an | ⊢ ( ( 𝑀 ∈ LMod ∧ 𝑁 ∈ LMod ) → ( 𝐵 × { 0 } ) ∈ ( 𝑀 GrpHom 𝑁 ) ) |
| 16 | 15 | 3adant3 | ⊢ ( ( 𝑀 ∈ LMod ∧ 𝑁 ∈ LMod ∧ 𝑆 = 𝑇 ) → ( 𝐵 × { 0 } ) ∈ ( 𝑀 GrpHom 𝑁 ) ) |
| 17 | simpl2 | ⊢ ( ( ( 𝑀 ∈ LMod ∧ 𝑁 ∈ LMod ∧ 𝑆 = 𝑇 ) ∧ ( 𝑥 ∈ ( Base ‘ 𝑆 ) ∧ 𝑦 ∈ 𝐵 ) ) → 𝑁 ∈ LMod ) | |
| 18 | simprl | ⊢ ( ( ( 𝑀 ∈ LMod ∧ 𝑁 ∈ LMod ∧ 𝑆 = 𝑇 ) ∧ ( 𝑥 ∈ ( Base ‘ 𝑆 ) ∧ 𝑦 ∈ 𝐵 ) ) → 𝑥 ∈ ( Base ‘ 𝑆 ) ) | |
| 19 | simpl3 | ⊢ ( ( ( 𝑀 ∈ LMod ∧ 𝑁 ∈ LMod ∧ 𝑆 = 𝑇 ) ∧ ( 𝑥 ∈ ( Base ‘ 𝑆 ) ∧ 𝑦 ∈ 𝐵 ) ) → 𝑆 = 𝑇 ) | |
| 20 | 19 | fveq2d | ⊢ ( ( ( 𝑀 ∈ LMod ∧ 𝑁 ∈ LMod ∧ 𝑆 = 𝑇 ) ∧ ( 𝑥 ∈ ( Base ‘ 𝑆 ) ∧ 𝑦 ∈ 𝐵 ) ) → ( Base ‘ 𝑆 ) = ( Base ‘ 𝑇 ) ) |
| 21 | 18 20 | eleqtrd | ⊢ ( ( ( 𝑀 ∈ LMod ∧ 𝑁 ∈ LMod ∧ 𝑆 = 𝑇 ) ∧ ( 𝑥 ∈ ( Base ‘ 𝑆 ) ∧ 𝑦 ∈ 𝐵 ) ) → 𝑥 ∈ ( Base ‘ 𝑇 ) ) |
| 22 | eqid | ⊢ ( Base ‘ 𝑇 ) = ( Base ‘ 𝑇 ) | |
| 23 | 4 6 22 1 | lmodvs0 | ⊢ ( ( 𝑁 ∈ LMod ∧ 𝑥 ∈ ( Base ‘ 𝑇 ) ) → ( 𝑥 ( ·𝑠 ‘ 𝑁 ) 0 ) = 0 ) |
| 24 | 17 21 23 | syl2anc | ⊢ ( ( ( 𝑀 ∈ LMod ∧ 𝑁 ∈ LMod ∧ 𝑆 = 𝑇 ) ∧ ( 𝑥 ∈ ( Base ‘ 𝑆 ) ∧ 𝑦 ∈ 𝐵 ) ) → ( 𝑥 ( ·𝑠 ‘ 𝑁 ) 0 ) = 0 ) |
| 25 | 1 | fvexi | ⊢ 0 ∈ V |
| 26 | 25 | fvconst2 | ⊢ ( 𝑦 ∈ 𝐵 → ( ( 𝐵 × { 0 } ) ‘ 𝑦 ) = 0 ) |
| 27 | 26 | oveq2d | ⊢ ( 𝑦 ∈ 𝐵 → ( 𝑥 ( ·𝑠 ‘ 𝑁 ) ( ( 𝐵 × { 0 } ) ‘ 𝑦 ) ) = ( 𝑥 ( ·𝑠 ‘ 𝑁 ) 0 ) ) |
| 28 | 27 | ad2antll | ⊢ ( ( ( 𝑀 ∈ LMod ∧ 𝑁 ∈ LMod ∧ 𝑆 = 𝑇 ) ∧ ( 𝑥 ∈ ( Base ‘ 𝑆 ) ∧ 𝑦 ∈ 𝐵 ) ) → ( 𝑥 ( ·𝑠 ‘ 𝑁 ) ( ( 𝐵 × { 0 } ) ‘ 𝑦 ) ) = ( 𝑥 ( ·𝑠 ‘ 𝑁 ) 0 ) ) |
| 29 | simpl1 | ⊢ ( ( ( 𝑀 ∈ LMod ∧ 𝑁 ∈ LMod ∧ 𝑆 = 𝑇 ) ∧ ( 𝑥 ∈ ( Base ‘ 𝑆 ) ∧ 𝑦 ∈ 𝐵 ) ) → 𝑀 ∈ LMod ) | |
| 30 | simprr | ⊢ ( ( ( 𝑀 ∈ LMod ∧ 𝑁 ∈ LMod ∧ 𝑆 = 𝑇 ) ∧ ( 𝑥 ∈ ( Base ‘ 𝑆 ) ∧ 𝑦 ∈ 𝐵 ) ) → 𝑦 ∈ 𝐵 ) | |
| 31 | 2 3 5 7 | lmodvscl | ⊢ ( ( 𝑀 ∈ LMod ∧ 𝑥 ∈ ( Base ‘ 𝑆 ) ∧ 𝑦 ∈ 𝐵 ) → ( 𝑥 ( ·𝑠 ‘ 𝑀 ) 𝑦 ) ∈ 𝐵 ) |
| 32 | 29 18 30 31 | syl3anc | ⊢ ( ( ( 𝑀 ∈ LMod ∧ 𝑁 ∈ LMod ∧ 𝑆 = 𝑇 ) ∧ ( 𝑥 ∈ ( Base ‘ 𝑆 ) ∧ 𝑦 ∈ 𝐵 ) ) → ( 𝑥 ( ·𝑠 ‘ 𝑀 ) 𝑦 ) ∈ 𝐵 ) |
| 33 | 25 | fvconst2 | ⊢ ( ( 𝑥 ( ·𝑠 ‘ 𝑀 ) 𝑦 ) ∈ 𝐵 → ( ( 𝐵 × { 0 } ) ‘ ( 𝑥 ( ·𝑠 ‘ 𝑀 ) 𝑦 ) ) = 0 ) |
| 34 | 32 33 | syl | ⊢ ( ( ( 𝑀 ∈ LMod ∧ 𝑁 ∈ LMod ∧ 𝑆 = 𝑇 ) ∧ ( 𝑥 ∈ ( Base ‘ 𝑆 ) ∧ 𝑦 ∈ 𝐵 ) ) → ( ( 𝐵 × { 0 } ) ‘ ( 𝑥 ( ·𝑠 ‘ 𝑀 ) 𝑦 ) ) = 0 ) |
| 35 | 24 28 34 | 3eqtr4rd | ⊢ ( ( ( 𝑀 ∈ LMod ∧ 𝑁 ∈ LMod ∧ 𝑆 = 𝑇 ) ∧ ( 𝑥 ∈ ( Base ‘ 𝑆 ) ∧ 𝑦 ∈ 𝐵 ) ) → ( ( 𝐵 × { 0 } ) ‘ ( 𝑥 ( ·𝑠 ‘ 𝑀 ) 𝑦 ) ) = ( 𝑥 ( ·𝑠 ‘ 𝑁 ) ( ( 𝐵 × { 0 } ) ‘ 𝑦 ) ) ) |
| 36 | 2 5 6 3 4 7 8 9 11 16 35 | islmhmd | ⊢ ( ( 𝑀 ∈ LMod ∧ 𝑁 ∈ LMod ∧ 𝑆 = 𝑇 ) → ( 𝐵 × { 0 } ) ∈ ( 𝑀 LMHom 𝑁 ) ) |