This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The constant zero linear function between two modules. (Contributed by Stefan O'Rear, 5-Sep-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | 0lmhm.z | |- .0. = ( 0g ` N ) |
|
| 0lmhm.b | |- B = ( Base ` M ) |
||
| 0lmhm.s | |- S = ( Scalar ` M ) |
||
| 0lmhm.t | |- T = ( Scalar ` N ) |
||
| Assertion | 0lmhm | |- ( ( M e. LMod /\ N e. LMod /\ S = T ) -> ( B X. { .0. } ) e. ( M LMHom N ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 0lmhm.z | |- .0. = ( 0g ` N ) |
|
| 2 | 0lmhm.b | |- B = ( Base ` M ) |
|
| 3 | 0lmhm.s | |- S = ( Scalar ` M ) |
|
| 4 | 0lmhm.t | |- T = ( Scalar ` N ) |
|
| 5 | eqid | |- ( .s ` M ) = ( .s ` M ) |
|
| 6 | eqid | |- ( .s ` N ) = ( .s ` N ) |
|
| 7 | eqid | |- ( Base ` S ) = ( Base ` S ) |
|
| 8 | simp1 | |- ( ( M e. LMod /\ N e. LMod /\ S = T ) -> M e. LMod ) |
|
| 9 | simp2 | |- ( ( M e. LMod /\ N e. LMod /\ S = T ) -> N e. LMod ) |
|
| 10 | simp3 | |- ( ( M e. LMod /\ N e. LMod /\ S = T ) -> S = T ) |
|
| 11 | 10 | eqcomd | |- ( ( M e. LMod /\ N e. LMod /\ S = T ) -> T = S ) |
| 12 | lmodgrp | |- ( M e. LMod -> M e. Grp ) |
|
| 13 | lmodgrp | |- ( N e. LMod -> N e. Grp ) |
|
| 14 | 1 2 | 0ghm | |- ( ( M e. Grp /\ N e. Grp ) -> ( B X. { .0. } ) e. ( M GrpHom N ) ) |
| 15 | 12 13 14 | syl2an | |- ( ( M e. LMod /\ N e. LMod ) -> ( B X. { .0. } ) e. ( M GrpHom N ) ) |
| 16 | 15 | 3adant3 | |- ( ( M e. LMod /\ N e. LMod /\ S = T ) -> ( B X. { .0. } ) e. ( M GrpHom N ) ) |
| 17 | simpl2 | |- ( ( ( M e. LMod /\ N e. LMod /\ S = T ) /\ ( x e. ( Base ` S ) /\ y e. B ) ) -> N e. LMod ) |
|
| 18 | simprl | |- ( ( ( M e. LMod /\ N e. LMod /\ S = T ) /\ ( x e. ( Base ` S ) /\ y e. B ) ) -> x e. ( Base ` S ) ) |
|
| 19 | simpl3 | |- ( ( ( M e. LMod /\ N e. LMod /\ S = T ) /\ ( x e. ( Base ` S ) /\ y e. B ) ) -> S = T ) |
|
| 20 | 19 | fveq2d | |- ( ( ( M e. LMod /\ N e. LMod /\ S = T ) /\ ( x e. ( Base ` S ) /\ y e. B ) ) -> ( Base ` S ) = ( Base ` T ) ) |
| 21 | 18 20 | eleqtrd | |- ( ( ( M e. LMod /\ N e. LMod /\ S = T ) /\ ( x e. ( Base ` S ) /\ y e. B ) ) -> x e. ( Base ` T ) ) |
| 22 | eqid | |- ( Base ` T ) = ( Base ` T ) |
|
| 23 | 4 6 22 1 | lmodvs0 | |- ( ( N e. LMod /\ x e. ( Base ` T ) ) -> ( x ( .s ` N ) .0. ) = .0. ) |
| 24 | 17 21 23 | syl2anc | |- ( ( ( M e. LMod /\ N e. LMod /\ S = T ) /\ ( x e. ( Base ` S ) /\ y e. B ) ) -> ( x ( .s ` N ) .0. ) = .0. ) |
| 25 | 1 | fvexi | |- .0. e. _V |
| 26 | 25 | fvconst2 | |- ( y e. B -> ( ( B X. { .0. } ) ` y ) = .0. ) |
| 27 | 26 | oveq2d | |- ( y e. B -> ( x ( .s ` N ) ( ( B X. { .0. } ) ` y ) ) = ( x ( .s ` N ) .0. ) ) |
| 28 | 27 | ad2antll | |- ( ( ( M e. LMod /\ N e. LMod /\ S = T ) /\ ( x e. ( Base ` S ) /\ y e. B ) ) -> ( x ( .s ` N ) ( ( B X. { .0. } ) ` y ) ) = ( x ( .s ` N ) .0. ) ) |
| 29 | simpl1 | |- ( ( ( M e. LMod /\ N e. LMod /\ S = T ) /\ ( x e. ( Base ` S ) /\ y e. B ) ) -> M e. LMod ) |
|
| 30 | simprr | |- ( ( ( M e. LMod /\ N e. LMod /\ S = T ) /\ ( x e. ( Base ` S ) /\ y e. B ) ) -> y e. B ) |
|
| 31 | 2 3 5 7 | lmodvscl | |- ( ( M e. LMod /\ x e. ( Base ` S ) /\ y e. B ) -> ( x ( .s ` M ) y ) e. B ) |
| 32 | 29 18 30 31 | syl3anc | |- ( ( ( M e. LMod /\ N e. LMod /\ S = T ) /\ ( x e. ( Base ` S ) /\ y e. B ) ) -> ( x ( .s ` M ) y ) e. B ) |
| 33 | 25 | fvconst2 | |- ( ( x ( .s ` M ) y ) e. B -> ( ( B X. { .0. } ) ` ( x ( .s ` M ) y ) ) = .0. ) |
| 34 | 32 33 | syl | |- ( ( ( M e. LMod /\ N e. LMod /\ S = T ) /\ ( x e. ( Base ` S ) /\ y e. B ) ) -> ( ( B X. { .0. } ) ` ( x ( .s ` M ) y ) ) = .0. ) |
| 35 | 24 28 34 | 3eqtr4rd | |- ( ( ( M e. LMod /\ N e. LMod /\ S = T ) /\ ( x e. ( Base ` S ) /\ y e. B ) ) -> ( ( B X. { .0. } ) ` ( x ( .s ` M ) y ) ) = ( x ( .s ` N ) ( ( B X. { .0. } ) ` y ) ) ) |
| 36 | 2 5 6 3 4 7 8 9 11 16 35 | islmhmd | |- ( ( M e. LMod /\ N e. LMod /\ S = T ) -> ( B X. { .0. } ) e. ( M LMHom N ) ) |