This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The identity function on a module is linear. (Contributed by Stefan O'Rear, 4-Sep-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | idlmhm.b | ⊢ 𝐵 = ( Base ‘ 𝑀 ) | |
| Assertion | idlmhm | ⊢ ( 𝑀 ∈ LMod → ( I ↾ 𝐵 ) ∈ ( 𝑀 LMHom 𝑀 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | idlmhm.b | ⊢ 𝐵 = ( Base ‘ 𝑀 ) | |
| 2 | eqid | ⊢ ( ·𝑠 ‘ 𝑀 ) = ( ·𝑠 ‘ 𝑀 ) | |
| 3 | eqid | ⊢ ( Scalar ‘ 𝑀 ) = ( Scalar ‘ 𝑀 ) | |
| 4 | eqid | ⊢ ( Base ‘ ( Scalar ‘ 𝑀 ) ) = ( Base ‘ ( Scalar ‘ 𝑀 ) ) | |
| 5 | id | ⊢ ( 𝑀 ∈ LMod → 𝑀 ∈ LMod ) | |
| 6 | eqidd | ⊢ ( 𝑀 ∈ LMod → ( Scalar ‘ 𝑀 ) = ( Scalar ‘ 𝑀 ) ) | |
| 7 | lmodgrp | ⊢ ( 𝑀 ∈ LMod → 𝑀 ∈ Grp ) | |
| 8 | 1 | idghm | ⊢ ( 𝑀 ∈ Grp → ( I ↾ 𝐵 ) ∈ ( 𝑀 GrpHom 𝑀 ) ) |
| 9 | 7 8 | syl | ⊢ ( 𝑀 ∈ LMod → ( I ↾ 𝐵 ) ∈ ( 𝑀 GrpHom 𝑀 ) ) |
| 10 | 1 3 2 4 | lmodvscl | ⊢ ( ( 𝑀 ∈ LMod ∧ 𝑥 ∈ ( Base ‘ ( Scalar ‘ 𝑀 ) ) ∧ 𝑦 ∈ 𝐵 ) → ( 𝑥 ( ·𝑠 ‘ 𝑀 ) 𝑦 ) ∈ 𝐵 ) |
| 11 | 10 | 3expb | ⊢ ( ( 𝑀 ∈ LMod ∧ ( 𝑥 ∈ ( Base ‘ ( Scalar ‘ 𝑀 ) ) ∧ 𝑦 ∈ 𝐵 ) ) → ( 𝑥 ( ·𝑠 ‘ 𝑀 ) 𝑦 ) ∈ 𝐵 ) |
| 12 | fvresi | ⊢ ( ( 𝑥 ( ·𝑠 ‘ 𝑀 ) 𝑦 ) ∈ 𝐵 → ( ( I ↾ 𝐵 ) ‘ ( 𝑥 ( ·𝑠 ‘ 𝑀 ) 𝑦 ) ) = ( 𝑥 ( ·𝑠 ‘ 𝑀 ) 𝑦 ) ) | |
| 13 | 11 12 | syl | ⊢ ( ( 𝑀 ∈ LMod ∧ ( 𝑥 ∈ ( Base ‘ ( Scalar ‘ 𝑀 ) ) ∧ 𝑦 ∈ 𝐵 ) ) → ( ( I ↾ 𝐵 ) ‘ ( 𝑥 ( ·𝑠 ‘ 𝑀 ) 𝑦 ) ) = ( 𝑥 ( ·𝑠 ‘ 𝑀 ) 𝑦 ) ) |
| 14 | fvresi | ⊢ ( 𝑦 ∈ 𝐵 → ( ( I ↾ 𝐵 ) ‘ 𝑦 ) = 𝑦 ) | |
| 15 | 14 | ad2antll | ⊢ ( ( 𝑀 ∈ LMod ∧ ( 𝑥 ∈ ( Base ‘ ( Scalar ‘ 𝑀 ) ) ∧ 𝑦 ∈ 𝐵 ) ) → ( ( I ↾ 𝐵 ) ‘ 𝑦 ) = 𝑦 ) |
| 16 | 15 | oveq2d | ⊢ ( ( 𝑀 ∈ LMod ∧ ( 𝑥 ∈ ( Base ‘ ( Scalar ‘ 𝑀 ) ) ∧ 𝑦 ∈ 𝐵 ) ) → ( 𝑥 ( ·𝑠 ‘ 𝑀 ) ( ( I ↾ 𝐵 ) ‘ 𝑦 ) ) = ( 𝑥 ( ·𝑠 ‘ 𝑀 ) 𝑦 ) ) |
| 17 | 13 16 | eqtr4d | ⊢ ( ( 𝑀 ∈ LMod ∧ ( 𝑥 ∈ ( Base ‘ ( Scalar ‘ 𝑀 ) ) ∧ 𝑦 ∈ 𝐵 ) ) → ( ( I ↾ 𝐵 ) ‘ ( 𝑥 ( ·𝑠 ‘ 𝑀 ) 𝑦 ) ) = ( 𝑥 ( ·𝑠 ‘ 𝑀 ) ( ( I ↾ 𝐵 ) ‘ 𝑦 ) ) ) |
| 18 | 1 2 2 3 3 4 5 5 6 9 17 | islmhmd | ⊢ ( 𝑀 ∈ LMod → ( I ↾ 𝐵 ) ∈ ( 𝑀 LMHom 𝑀 ) ) |