This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Obsolete version of 01eq0ring as of 23-Feb-2025. (Contributed by AV, 16-Apr-2019) (Proof modification is discouraged.) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | 0ring.b | ⊢ 𝐵 = ( Base ‘ 𝑅 ) | |
| 0ring.0 | ⊢ 0 = ( 0g ‘ 𝑅 ) | ||
| 0ring01eq.1 | ⊢ 1 = ( 1r ‘ 𝑅 ) | ||
| Assertion | 01eq0ringOLD | ⊢ ( ( 𝑅 ∈ Ring ∧ 0 = 1 ) → 𝐵 = { 0 } ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 0ring.b | ⊢ 𝐵 = ( Base ‘ 𝑅 ) | |
| 2 | 0ring.0 | ⊢ 0 = ( 0g ‘ 𝑅 ) | |
| 3 | 0ring01eq.1 | ⊢ 1 = ( 1r ‘ 𝑅 ) | |
| 4 | 1 | fvexi | ⊢ 𝐵 ∈ V |
| 5 | hashv01gt1 | ⊢ ( 𝐵 ∈ V → ( ( ♯ ‘ 𝐵 ) = 0 ∨ ( ♯ ‘ 𝐵 ) = 1 ∨ 1 < ( ♯ ‘ 𝐵 ) ) ) | |
| 6 | 4 5 | ax-mp | ⊢ ( ( ♯ ‘ 𝐵 ) = 0 ∨ ( ♯ ‘ 𝐵 ) = 1 ∨ 1 < ( ♯ ‘ 𝐵 ) ) |
| 7 | hasheq0 | ⊢ ( 𝐵 ∈ V → ( ( ♯ ‘ 𝐵 ) = 0 ↔ 𝐵 = ∅ ) ) | |
| 8 | 4 7 | ax-mp | ⊢ ( ( ♯ ‘ 𝐵 ) = 0 ↔ 𝐵 = ∅ ) |
| 9 | ne0i | ⊢ ( 0 ∈ 𝐵 → 𝐵 ≠ ∅ ) | |
| 10 | eqneqall | ⊢ ( 𝐵 = ∅ → ( 𝐵 ≠ ∅ → ( ( ♯ ‘ 𝐵 ) ≠ 1 → 0 ≠ 1 ) ) ) | |
| 11 | 9 10 | syl5com | ⊢ ( 0 ∈ 𝐵 → ( 𝐵 = ∅ → ( ( ♯ ‘ 𝐵 ) ≠ 1 → 0 ≠ 1 ) ) ) |
| 12 | 8 11 | biimtrid | ⊢ ( 0 ∈ 𝐵 → ( ( ♯ ‘ 𝐵 ) = 0 → ( ( ♯ ‘ 𝐵 ) ≠ 1 → 0 ≠ 1 ) ) ) |
| 13 | 1 2 | ring0cl | ⊢ ( 𝑅 ∈ Ring → 0 ∈ 𝐵 ) |
| 14 | 12 13 | syl11 | ⊢ ( ( ♯ ‘ 𝐵 ) = 0 → ( 𝑅 ∈ Ring → ( ( ♯ ‘ 𝐵 ) ≠ 1 → 0 ≠ 1 ) ) ) |
| 15 | eqneqall | ⊢ ( ( ♯ ‘ 𝐵 ) = 1 → ( ( ♯ ‘ 𝐵 ) ≠ 1 → 0 ≠ 1 ) ) | |
| 16 | 15 | a1d | ⊢ ( ( ♯ ‘ 𝐵 ) = 1 → ( 𝑅 ∈ Ring → ( ( ♯ ‘ 𝐵 ) ≠ 1 → 0 ≠ 1 ) ) ) |
| 17 | 1 3 2 | ring1ne0 | ⊢ ( ( 𝑅 ∈ Ring ∧ 1 < ( ♯ ‘ 𝐵 ) ) → 1 ≠ 0 ) |
| 18 | 17 | necomd | ⊢ ( ( 𝑅 ∈ Ring ∧ 1 < ( ♯ ‘ 𝐵 ) ) → 0 ≠ 1 ) |
| 19 | 18 | ex | ⊢ ( 𝑅 ∈ Ring → ( 1 < ( ♯ ‘ 𝐵 ) → 0 ≠ 1 ) ) |
| 20 | 19 | a1i | ⊢ ( ( ♯ ‘ 𝐵 ) ≠ 1 → ( 𝑅 ∈ Ring → ( 1 < ( ♯ ‘ 𝐵 ) → 0 ≠ 1 ) ) ) |
| 21 | 20 | com13 | ⊢ ( 1 < ( ♯ ‘ 𝐵 ) → ( 𝑅 ∈ Ring → ( ( ♯ ‘ 𝐵 ) ≠ 1 → 0 ≠ 1 ) ) ) |
| 22 | 14 16 21 | 3jaoi | ⊢ ( ( ( ♯ ‘ 𝐵 ) = 0 ∨ ( ♯ ‘ 𝐵 ) = 1 ∨ 1 < ( ♯ ‘ 𝐵 ) ) → ( 𝑅 ∈ Ring → ( ( ♯ ‘ 𝐵 ) ≠ 1 → 0 ≠ 1 ) ) ) |
| 23 | 6 22 | ax-mp | ⊢ ( 𝑅 ∈ Ring → ( ( ♯ ‘ 𝐵 ) ≠ 1 → 0 ≠ 1 ) ) |
| 24 | 23 | necon4d | ⊢ ( 𝑅 ∈ Ring → ( 0 = 1 → ( ♯ ‘ 𝐵 ) = 1 ) ) |
| 25 | 24 | imp | ⊢ ( ( 𝑅 ∈ Ring ∧ 0 = 1 ) → ( ♯ ‘ 𝐵 ) = 1 ) |
| 26 | 1 2 | 0ring | ⊢ ( ( 𝑅 ∈ Ring ∧ ( ♯ ‘ 𝐵 ) = 1 ) → 𝐵 = { 0 } ) |
| 27 | 25 26 | syldan | ⊢ ( ( 𝑅 ∈ Ring ∧ 0 = 1 ) → 𝐵 = { 0 } ) |