This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: If the zero and the identity element of a ring are the same, the ring is the zero ring. (Contributed by AV, 16-Apr-2019) (Proof shortened by SN, 23-Feb-2025)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | 0ring.b | ⊢ 𝐵 = ( Base ‘ 𝑅 ) | |
| 0ring.0 | ⊢ 0 = ( 0g ‘ 𝑅 ) | ||
| 0ring01eq.1 | ⊢ 1 = ( 1r ‘ 𝑅 ) | ||
| Assertion | 01eq0ring | ⊢ ( ( 𝑅 ∈ Ring ∧ 0 = 1 ) → 𝐵 = { 0 } ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 0ring.b | ⊢ 𝐵 = ( Base ‘ 𝑅 ) | |
| 2 | 0ring.0 | ⊢ 0 = ( 0g ‘ 𝑅 ) | |
| 3 | 0ring01eq.1 | ⊢ 1 = ( 1r ‘ 𝑅 ) | |
| 4 | eqcom | ⊢ ( 0 = 1 ↔ 1 = 0 ) | |
| 5 | 1 2 | ring0cl | ⊢ ( 𝑅 ∈ Ring → 0 ∈ 𝐵 ) |
| 6 | 5 | ne0d | ⊢ ( 𝑅 ∈ Ring → 𝐵 ≠ ∅ ) |
| 7 | 5 | adantr | ⊢ ( ( 𝑅 ∈ Ring ∧ 𝑥 ∈ 𝐵 ) → 0 ∈ 𝐵 ) |
| 8 | 1 3 2 | ring1eq0 | ⊢ ( ( 𝑅 ∈ Ring ∧ 𝑥 ∈ 𝐵 ∧ 0 ∈ 𝐵 ) → ( 1 = 0 → 𝑥 = 0 ) ) |
| 9 | 7 8 | mpd3an3 | ⊢ ( ( 𝑅 ∈ Ring ∧ 𝑥 ∈ 𝐵 ) → ( 1 = 0 → 𝑥 = 0 ) ) |
| 10 | 9 | impancom | ⊢ ( ( 𝑅 ∈ Ring ∧ 1 = 0 ) → ( 𝑥 ∈ 𝐵 → 𝑥 = 0 ) ) |
| 11 | 10 | ralrimiv | ⊢ ( ( 𝑅 ∈ Ring ∧ 1 = 0 ) → ∀ 𝑥 ∈ 𝐵 𝑥 = 0 ) |
| 12 | eqsn | ⊢ ( 𝐵 ≠ ∅ → ( 𝐵 = { 0 } ↔ ∀ 𝑥 ∈ 𝐵 𝑥 = 0 ) ) | |
| 13 | 12 | biimpar | ⊢ ( ( 𝐵 ≠ ∅ ∧ ∀ 𝑥 ∈ 𝐵 𝑥 = 0 ) → 𝐵 = { 0 } ) |
| 14 | 6 11 13 | syl2an2r | ⊢ ( ( 𝑅 ∈ Ring ∧ 1 = 0 ) → 𝐵 = { 0 } ) |
| 15 | 4 14 | sylan2b | ⊢ ( ( 𝑅 ∈ Ring ∧ 0 = 1 ) → 𝐵 = { 0 } ) |