This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: In a unital ring the zero equals the unity iff the ring is the zero ring. (Contributed by FL, 14-Feb-2010) (Revised by AV, 23-Jan-2020)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | 0ring.b | ⊢ 𝐵 = ( Base ‘ 𝑅 ) | |
| 0ring.0 | ⊢ 0 = ( 0g ‘ 𝑅 ) | ||
| 0ring01eq.1 | ⊢ 1 = ( 1r ‘ 𝑅 ) | ||
| Assertion | 0ring01eqbi | ⊢ ( 𝑅 ∈ Ring → ( 𝐵 ≈ 1o ↔ 1 = 0 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 0ring.b | ⊢ 𝐵 = ( Base ‘ 𝑅 ) | |
| 2 | 0ring.0 | ⊢ 0 = ( 0g ‘ 𝑅 ) | |
| 3 | 0ring01eq.1 | ⊢ 1 = ( 1r ‘ 𝑅 ) | |
| 4 | 1 | fvexi | ⊢ 𝐵 ∈ V |
| 5 | hashen1 | ⊢ ( 𝐵 ∈ V → ( ( ♯ ‘ 𝐵 ) = 1 ↔ 𝐵 ≈ 1o ) ) | |
| 6 | 4 5 | mp1i | ⊢ ( 𝑅 ∈ Ring → ( ( ♯ ‘ 𝐵 ) = 1 ↔ 𝐵 ≈ 1o ) ) |
| 7 | 1 2 3 | 0ring01eq | ⊢ ( ( 𝑅 ∈ Ring ∧ ( ♯ ‘ 𝐵 ) = 1 ) → 0 = 1 ) |
| 8 | 7 | eqcomd | ⊢ ( ( 𝑅 ∈ Ring ∧ ( ♯ ‘ 𝐵 ) = 1 ) → 1 = 0 ) |
| 9 | 8 | ex | ⊢ ( 𝑅 ∈ Ring → ( ( ♯ ‘ 𝐵 ) = 1 → 1 = 0 ) ) |
| 10 | eqcom | ⊢ ( 1 = 0 ↔ 0 = 1 ) | |
| 11 | 1 2 3 | 01eq0ring | ⊢ ( ( 𝑅 ∈ Ring ∧ 0 = 1 ) → 𝐵 = { 0 } ) |
| 12 | fveq2 | ⊢ ( 𝐵 = { 0 } → ( ♯ ‘ 𝐵 ) = ( ♯ ‘ { 0 } ) ) | |
| 13 | 2 | fvexi | ⊢ 0 ∈ V |
| 14 | hashsng | ⊢ ( 0 ∈ V → ( ♯ ‘ { 0 } ) = 1 ) | |
| 15 | 13 14 | mp1i | ⊢ ( 𝐵 = { 0 } → ( ♯ ‘ { 0 } ) = 1 ) |
| 16 | 12 15 | eqtrd | ⊢ ( 𝐵 = { 0 } → ( ♯ ‘ 𝐵 ) = 1 ) |
| 17 | 11 16 | syl | ⊢ ( ( 𝑅 ∈ Ring ∧ 0 = 1 ) → ( ♯ ‘ 𝐵 ) = 1 ) |
| 18 | 17 | ex | ⊢ ( 𝑅 ∈ Ring → ( 0 = 1 → ( ♯ ‘ 𝐵 ) = 1 ) ) |
| 19 | 10 18 | biimtrid | ⊢ ( 𝑅 ∈ Ring → ( 1 = 0 → ( ♯ ‘ 𝐵 ) = 1 ) ) |
| 20 | 9 19 | impbid | ⊢ ( 𝑅 ∈ Ring → ( ( ♯ ‘ 𝐵 ) = 1 ↔ 1 = 0 ) ) |
| 21 | 6 20 | bitr3d | ⊢ ( 𝑅 ∈ Ring → ( 𝐵 ≈ 1o ↔ 1 = 0 ) ) |