This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A condition which implies existential uniqueness. (Contributed by Jeff Hankins, 8-Sep-2009)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | eqeu.1 | |- ( x = A -> ( ph <-> ps ) ) |
|
| Assertion | eqeu | |- ( ( A e. B /\ ps /\ A. x ( ph -> x = A ) ) -> E! x ph ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqeu.1 | |- ( x = A -> ( ph <-> ps ) ) |
|
| 2 | 1 | spcegv | |- ( A e. B -> ( ps -> E. x ph ) ) |
| 3 | 2 | imp | |- ( ( A e. B /\ ps ) -> E. x ph ) |
| 4 | 3 | 3adant3 | |- ( ( A e. B /\ ps /\ A. x ( ph -> x = A ) ) -> E. x ph ) |
| 5 | eqeq2 | |- ( y = A -> ( x = y <-> x = A ) ) |
|
| 6 | 5 | imbi2d | |- ( y = A -> ( ( ph -> x = y ) <-> ( ph -> x = A ) ) ) |
| 7 | 6 | albidv | |- ( y = A -> ( A. x ( ph -> x = y ) <-> A. x ( ph -> x = A ) ) ) |
| 8 | 7 | spcegv | |- ( A e. B -> ( A. x ( ph -> x = A ) -> E. y A. x ( ph -> x = y ) ) ) |
| 9 | 8 | imp | |- ( ( A e. B /\ A. x ( ph -> x = A ) ) -> E. y A. x ( ph -> x = y ) ) |
| 10 | 9 | 3adant2 | |- ( ( A e. B /\ ps /\ A. x ( ph -> x = A ) ) -> E. y A. x ( ph -> x = y ) ) |
| 11 | eu3v | |- ( E! x ph <-> ( E. x ph /\ E. y A. x ( ph -> x = y ) ) ) |
|
| 12 | 4 10 11 | sylanbrc | |- ( ( A e. B /\ ps /\ A. x ( ph -> x = A ) ) -> E! x ph ) |