This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The zero ring is not an initial object in the category of unital rings (if the universe contains at least one unital ring different from the zero ring). (Contributed by AV, 18-Apr-2020)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | zrtermoringc.u | |- ( ph -> U e. V ) |
|
| zrtermoringc.c | |- C = ( RingCat ` U ) |
||
| zrtermoringc.z | |- ( ph -> Z e. ( Ring \ NzRing ) ) |
||
| zrtermoringc.e | |- ( ph -> Z e. U ) |
||
| zrninitoringc.e | |- ( ph -> E. r e. ( Base ` C ) r e. NzRing ) |
||
| Assertion | zrninitoringc | |- ( ph -> Z e/ ( InitO ` C ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | zrtermoringc.u | |- ( ph -> U e. V ) |
|
| 2 | zrtermoringc.c | |- C = ( RingCat ` U ) |
|
| 3 | zrtermoringc.z | |- ( ph -> Z e. ( Ring \ NzRing ) ) |
|
| 4 | zrtermoringc.e | |- ( ph -> Z e. U ) |
|
| 5 | zrninitoringc.e | |- ( ph -> E. r e. ( Base ` C ) r e. NzRing ) |
|
| 6 | eqid | |- ( Base ` C ) = ( Base ` C ) |
|
| 7 | 1 | ad2antrr | |- ( ( ( ph /\ r e. ( Base ` C ) ) /\ r e. NzRing ) -> U e. V ) |
| 8 | eqid | |- ( Hom ` C ) = ( Hom ` C ) |
|
| 9 | 3 | eldifad | |- ( ph -> Z e. Ring ) |
| 10 | 4 9 | elind | |- ( ph -> Z e. ( U i^i Ring ) ) |
| 11 | 2 6 1 | ringcbas | |- ( ph -> ( Base ` C ) = ( U i^i Ring ) ) |
| 12 | 10 11 | eleqtrrd | |- ( ph -> Z e. ( Base ` C ) ) |
| 13 | 12 | ad2antrr | |- ( ( ( ph /\ r e. ( Base ` C ) ) /\ r e. NzRing ) -> Z e. ( Base ` C ) ) |
| 14 | simplr | |- ( ( ( ph /\ r e. ( Base ` C ) ) /\ r e. NzRing ) -> r e. ( Base ` C ) ) |
|
| 15 | 2 6 7 8 13 14 | ringchom | |- ( ( ( ph /\ r e. ( Base ` C ) ) /\ r e. NzRing ) -> ( Z ( Hom ` C ) r ) = ( Z RingHom r ) ) |
| 16 | 3 | adantr | |- ( ( ph /\ r e. ( Base ` C ) ) -> Z e. ( Ring \ NzRing ) ) |
| 17 | nrhmzr | |- ( ( Z e. ( Ring \ NzRing ) /\ r e. NzRing ) -> ( Z RingHom r ) = (/) ) |
|
| 18 | 16 17 | sylan | |- ( ( ( ph /\ r e. ( Base ` C ) ) /\ r e. NzRing ) -> ( Z RingHom r ) = (/) ) |
| 19 | 15 18 | eqtrd | |- ( ( ( ph /\ r e. ( Base ` C ) ) /\ r e. NzRing ) -> ( Z ( Hom ` C ) r ) = (/) ) |
| 20 | eq0 | |- ( ( Z ( Hom ` C ) r ) = (/) <-> A. h -. h e. ( Z ( Hom ` C ) r ) ) |
|
| 21 | 19 20 | sylib | |- ( ( ( ph /\ r e. ( Base ` C ) ) /\ r e. NzRing ) -> A. h -. h e. ( Z ( Hom ` C ) r ) ) |
| 22 | alnex | |- ( A. h -. h e. ( Z ( Hom ` C ) r ) <-> -. E. h h e. ( Z ( Hom ` C ) r ) ) |
|
| 23 | 21 22 | sylib | |- ( ( ( ph /\ r e. ( Base ` C ) ) /\ r e. NzRing ) -> -. E. h h e. ( Z ( Hom ` C ) r ) ) |
| 24 | euex | |- ( E! h h e. ( Z ( Hom ` C ) r ) -> E. h h e. ( Z ( Hom ` C ) r ) ) |
|
| 25 | 23 24 | nsyl | |- ( ( ( ph /\ r e. ( Base ` C ) ) /\ r e. NzRing ) -> -. E! h h e. ( Z ( Hom ` C ) r ) ) |
| 26 | 25 | ex | |- ( ( ph /\ r e. ( Base ` C ) ) -> ( r e. NzRing -> -. E! h h e. ( Z ( Hom ` C ) r ) ) ) |
| 27 | 26 | reximdva | |- ( ph -> ( E. r e. ( Base ` C ) r e. NzRing -> E. r e. ( Base ` C ) -. E! h h e. ( Z ( Hom ` C ) r ) ) ) |
| 28 | 5 27 | mpd | |- ( ph -> E. r e. ( Base ` C ) -. E! h h e. ( Z ( Hom ` C ) r ) ) |
| 29 | rexnal | |- ( E. r e. ( Base ` C ) -. E! h h e. ( Z ( Hom ` C ) r ) <-> -. A. r e. ( Base ` C ) E! h h e. ( Z ( Hom ` C ) r ) ) |
|
| 30 | 28 29 | sylib | |- ( ph -> -. A. r e. ( Base ` C ) E! h h e. ( Z ( Hom ` C ) r ) ) |
| 31 | df-nel | |- ( Z e/ ( InitO ` C ) <-> -. Z e. ( InitO ` C ) ) |
|
| 32 | 2 | ringccat | |- ( U e. V -> C e. Cat ) |
| 33 | 1 32 | syl | |- ( ph -> C e. Cat ) |
| 34 | 6 8 33 12 | isinito | |- ( ph -> ( Z e. ( InitO ` C ) <-> A. r e. ( Base ` C ) E! h h e. ( Z ( Hom ` C ) r ) ) ) |
| 35 | 34 | notbid | |- ( ph -> ( -. Z e. ( InitO ` C ) <-> -. A. r e. ( Base ` C ) E! h h e. ( Z ( Hom ` C ) r ) ) ) |
| 36 | 31 35 | bitrid | |- ( ph -> ( Z e/ ( InitO ` C ) <-> -. A. r e. ( Base ` C ) E! h h e. ( Z ( Hom ` C ) r ) ) ) |
| 37 | 30 36 | mpbird | |- ( ph -> Z e/ ( InitO ` C ) ) |