This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A non-unital ring homomorphism is an additive group homomorphism. (Contributed by AV, 23-Feb-2020)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | rnghmghm | |- ( F e. ( R RngHom S ) -> F e. ( R GrpHom S ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid | |- ( Base ` R ) = ( Base ` R ) |
|
| 2 | eqid | |- ( .r ` R ) = ( .r ` R ) |
|
| 3 | eqid | |- ( .r ` S ) = ( .r ` S ) |
|
| 4 | 1 2 3 | isrnghm | |- ( F e. ( R RngHom S ) <-> ( ( R e. Rng /\ S e. Rng ) /\ ( F e. ( R GrpHom S ) /\ A. x e. ( Base ` R ) A. y e. ( Base ` R ) ( F ` ( x ( .r ` R ) y ) ) = ( ( F ` x ) ( .r ` S ) ( F ` y ) ) ) ) ) |
| 5 | simprl | |- ( ( ( R e. Rng /\ S e. Rng ) /\ ( F e. ( R GrpHom S ) /\ A. x e. ( Base ` R ) A. y e. ( Base ` R ) ( F ` ( x ( .r ` R ) y ) ) = ( ( F ` x ) ( .r ` S ) ( F ` y ) ) ) ) -> F e. ( R GrpHom S ) ) |
|
| 6 | 4 5 | sylbi | |- ( F e. ( R RngHom S ) -> F e. ( R GrpHom S ) ) |