This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Scalar ring of a ZZ -module. (Contributed by Mario Carneiro, 2-Oct-2015) (Revised by AV, 12-Jun-2019) (Proof shortened by AV, 2-Nov-2024)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | zlmbas.w | |- W = ( ZMod ` G ) |
|
| Assertion | zlmsca | |- ( G e. V -> ZZring = ( Scalar ` W ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | zlmbas.w | |- W = ( ZMod ` G ) |
|
| 2 | scaid | |- Scalar = Slot ( Scalar ` ndx ) |
|
| 3 | vscandxnscandx | |- ( .s ` ndx ) =/= ( Scalar ` ndx ) |
|
| 4 | 3 | necomi | |- ( Scalar ` ndx ) =/= ( .s ` ndx ) |
| 5 | 2 4 | setsnid | |- ( Scalar ` ( G sSet <. ( Scalar ` ndx ) , ZZring >. ) ) = ( Scalar ` ( ( G sSet <. ( Scalar ` ndx ) , ZZring >. ) sSet <. ( .s ` ndx ) , ( .g ` G ) >. ) ) |
| 6 | zringring | |- ZZring e. Ring |
|
| 7 | 2 | setsid | |- ( ( G e. V /\ ZZring e. Ring ) -> ZZring = ( Scalar ` ( G sSet <. ( Scalar ` ndx ) , ZZring >. ) ) ) |
| 8 | 6 7 | mpan2 | |- ( G e. V -> ZZring = ( Scalar ` ( G sSet <. ( Scalar ` ndx ) , ZZring >. ) ) ) |
| 9 | eqid | |- ( .g ` G ) = ( .g ` G ) |
|
| 10 | 1 9 | zlmval | |- ( G e. V -> W = ( ( G sSet <. ( Scalar ` ndx ) , ZZring >. ) sSet <. ( .s ` ndx ) , ( .g ` G ) >. ) ) |
| 11 | 10 | fveq2d | |- ( G e. V -> ( Scalar ` W ) = ( Scalar ` ( ( G sSet <. ( Scalar ` ndx ) , ZZring >. ) sSet <. ( .s ` ndx ) , ( .g ` G ) >. ) ) ) |
| 12 | 5 8 11 | 3eqtr4a | |- ( G e. V -> ZZring = ( Scalar ` W ) ) |