This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Scalar multiplication operation of a ZZ -module. (Contributed by Mario Carneiro, 2-Oct-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | zlmbas.w | |- W = ( ZMod ` G ) |
|
| zlmvsca.2 | |- .x. = ( .g ` G ) |
||
| Assertion | zlmvsca | |- .x. = ( .s ` W ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | zlmbas.w | |- W = ( ZMod ` G ) |
|
| 2 | zlmvsca.2 | |- .x. = ( .g ` G ) |
|
| 3 | ovex | |- ( G sSet <. ( Scalar ` ndx ) , ZZring >. ) e. _V |
|
| 4 | 2 | fvexi | |- .x. e. _V |
| 5 | vscaid | |- .s = Slot ( .s ` ndx ) |
|
| 6 | 5 | setsid | |- ( ( ( G sSet <. ( Scalar ` ndx ) , ZZring >. ) e. _V /\ .x. e. _V ) -> .x. = ( .s ` ( ( G sSet <. ( Scalar ` ndx ) , ZZring >. ) sSet <. ( .s ` ndx ) , .x. >. ) ) ) |
| 7 | 3 4 6 | mp2an | |- .x. = ( .s ` ( ( G sSet <. ( Scalar ` ndx ) , ZZring >. ) sSet <. ( .s ` ndx ) , .x. >. ) ) |
| 8 | 1 2 | zlmval | |- ( G e. _V -> W = ( ( G sSet <. ( Scalar ` ndx ) , ZZring >. ) sSet <. ( .s ` ndx ) , .x. >. ) ) |
| 9 | 8 | fveq2d | |- ( G e. _V -> ( .s ` W ) = ( .s ` ( ( G sSet <. ( Scalar ` ndx ) , ZZring >. ) sSet <. ( .s ` ndx ) , .x. >. ) ) ) |
| 10 | 7 9 | eqtr4id | |- ( G e. _V -> .x. = ( .s ` W ) ) |
| 11 | 5 | str0 | |- (/) = ( .s ` (/) ) |
| 12 | fvprc | |- ( -. G e. _V -> ( .g ` G ) = (/) ) |
|
| 13 | 2 12 | eqtrid | |- ( -. G e. _V -> .x. = (/) ) |
| 14 | fvprc | |- ( -. G e. _V -> ( ZMod ` G ) = (/) ) |
|
| 15 | 1 14 | eqtrid | |- ( -. G e. _V -> W = (/) ) |
| 16 | 15 | fveq2d | |- ( -. G e. _V -> ( .s ` W ) = ( .s ` (/) ) ) |
| 17 | 11 13 16 | 3eqtr4a | |- ( -. G e. _V -> .x. = ( .s ` W ) ) |
| 18 | 10 17 | pm2.61i | |- .x. = ( .s ` W ) |