This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: An associative property between group multiple and ring multiplication. (Contributed by Mario Carneiro, 14-Jun-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | mulgass3.b | |- B = ( Base ` R ) |
|
| mulgass3.m | |- .x. = ( .g ` R ) |
||
| mulgass3.t | |- .X. = ( .r ` R ) |
||
| Assertion | mulgass3 | |- ( ( R e. Ring /\ ( N e. ZZ /\ X e. B /\ Y e. B ) ) -> ( X .X. ( N .x. Y ) ) = ( N .x. ( X .X. Y ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mulgass3.b | |- B = ( Base ` R ) |
|
| 2 | mulgass3.m | |- .x. = ( .g ` R ) |
|
| 3 | mulgass3.t | |- .X. = ( .r ` R ) |
|
| 4 | eqid | |- ( oppR ` R ) = ( oppR ` R ) |
|
| 5 | 4 | opprring | |- ( R e. Ring -> ( oppR ` R ) e. Ring ) |
| 6 | 5 | adantr | |- ( ( R e. Ring /\ ( N e. ZZ /\ X e. B /\ Y e. B ) ) -> ( oppR ` R ) e. Ring ) |
| 7 | simpr1 | |- ( ( R e. Ring /\ ( N e. ZZ /\ X e. B /\ Y e. B ) ) -> N e. ZZ ) |
|
| 8 | simpr3 | |- ( ( R e. Ring /\ ( N e. ZZ /\ X e. B /\ Y e. B ) ) -> Y e. B ) |
|
| 9 | simpr2 | |- ( ( R e. Ring /\ ( N e. ZZ /\ X e. B /\ Y e. B ) ) -> X e. B ) |
|
| 10 | 4 1 | opprbas | |- B = ( Base ` ( oppR ` R ) ) |
| 11 | eqid | |- ( .g ` ( oppR ` R ) ) = ( .g ` ( oppR ` R ) ) |
|
| 12 | eqid | |- ( .r ` ( oppR ` R ) ) = ( .r ` ( oppR ` R ) ) |
|
| 13 | 10 11 12 | mulgass2 | |- ( ( ( oppR ` R ) e. Ring /\ ( N e. ZZ /\ Y e. B /\ X e. B ) ) -> ( ( N ( .g ` ( oppR ` R ) ) Y ) ( .r ` ( oppR ` R ) ) X ) = ( N ( .g ` ( oppR ` R ) ) ( Y ( .r ` ( oppR ` R ) ) X ) ) ) |
| 14 | 6 7 8 9 13 | syl13anc | |- ( ( R e. Ring /\ ( N e. ZZ /\ X e. B /\ Y e. B ) ) -> ( ( N ( .g ` ( oppR ` R ) ) Y ) ( .r ` ( oppR ` R ) ) X ) = ( N ( .g ` ( oppR ` R ) ) ( Y ( .r ` ( oppR ` R ) ) X ) ) ) |
| 15 | 1 3 4 12 | opprmul | |- ( ( N ( .g ` ( oppR ` R ) ) Y ) ( .r ` ( oppR ` R ) ) X ) = ( X .X. ( N ( .g ` ( oppR ` R ) ) Y ) ) |
| 16 | 1 3 4 12 | opprmul | |- ( Y ( .r ` ( oppR ` R ) ) X ) = ( X .X. Y ) |
| 17 | 16 | oveq2i | |- ( N ( .g ` ( oppR ` R ) ) ( Y ( .r ` ( oppR ` R ) ) X ) ) = ( N ( .g ` ( oppR ` R ) ) ( X .X. Y ) ) |
| 18 | 14 15 17 | 3eqtr3g | |- ( ( R e. Ring /\ ( N e. ZZ /\ X e. B /\ Y e. B ) ) -> ( X .X. ( N ( .g ` ( oppR ` R ) ) Y ) ) = ( N ( .g ` ( oppR ` R ) ) ( X .X. Y ) ) ) |
| 19 | 1 | a1i | |- ( ( R e. Ring /\ ( N e. ZZ /\ X e. B /\ Y e. B ) ) -> B = ( Base ` R ) ) |
| 20 | 10 | a1i | |- ( ( R e. Ring /\ ( N e. ZZ /\ X e. B /\ Y e. B ) ) -> B = ( Base ` ( oppR ` R ) ) ) |
| 21 | ssv | |- B C_ _V |
|
| 22 | 21 | a1i | |- ( ( R e. Ring /\ ( N e. ZZ /\ X e. B /\ Y e. B ) ) -> B C_ _V ) |
| 23 | ovexd | |- ( ( ( R e. Ring /\ ( N e. ZZ /\ X e. B /\ Y e. B ) ) /\ ( x e. _V /\ y e. _V ) ) -> ( x ( +g ` R ) y ) e. _V ) |
|
| 24 | eqid | |- ( +g ` R ) = ( +g ` R ) |
|
| 25 | 4 24 | oppradd | |- ( +g ` R ) = ( +g ` ( oppR ` R ) ) |
| 26 | 25 | oveqi | |- ( x ( +g ` R ) y ) = ( x ( +g ` ( oppR ` R ) ) y ) |
| 27 | 26 | a1i | |- ( ( ( R e. Ring /\ ( N e. ZZ /\ X e. B /\ Y e. B ) ) /\ ( x e. _V /\ y e. _V ) ) -> ( x ( +g ` R ) y ) = ( x ( +g ` ( oppR ` R ) ) y ) ) |
| 28 | 2 11 19 20 22 23 27 | mulgpropd | |- ( ( R e. Ring /\ ( N e. ZZ /\ X e. B /\ Y e. B ) ) -> .x. = ( .g ` ( oppR ` R ) ) ) |
| 29 | 28 | oveqd | |- ( ( R e. Ring /\ ( N e. ZZ /\ X e. B /\ Y e. B ) ) -> ( N .x. Y ) = ( N ( .g ` ( oppR ` R ) ) Y ) ) |
| 30 | 29 | oveq2d | |- ( ( R e. Ring /\ ( N e. ZZ /\ X e. B /\ Y e. B ) ) -> ( X .X. ( N .x. Y ) ) = ( X .X. ( N ( .g ` ( oppR ` R ) ) Y ) ) ) |
| 31 | 28 | oveqd | |- ( ( R e. Ring /\ ( N e. ZZ /\ X e. B /\ Y e. B ) ) -> ( N .x. ( X .X. Y ) ) = ( N ( .g ` ( oppR ` R ) ) ( X .X. Y ) ) ) |
| 32 | 18 30 31 | 3eqtr4d | |- ( ( R e. Ring /\ ( N e. ZZ /\ X e. B /\ Y e. B ) ) -> ( X .X. ( N .x. Y ) ) = ( N .x. ( X .X. Y ) ) ) |