This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Property of divisibility: if D divides A and B then it divides A + B . (Contributed by NM, 3-Oct-2008)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | zdivadd | |- ( ( ( D e. NN /\ A e. ZZ /\ B e. ZZ ) /\ ( ( A / D ) e. ZZ /\ ( B / D ) e. ZZ ) ) -> ( ( A + B ) / D ) e. ZZ ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | zcn | |- ( A e. ZZ -> A e. CC ) |
|
| 2 | zcn | |- ( B e. ZZ -> B e. CC ) |
|
| 3 | nncn | |- ( D e. NN -> D e. CC ) |
|
| 4 | nnne0 | |- ( D e. NN -> D =/= 0 ) |
|
| 5 | 3 4 | jca | |- ( D e. NN -> ( D e. CC /\ D =/= 0 ) ) |
| 6 | divdir | |- ( ( A e. CC /\ B e. CC /\ ( D e. CC /\ D =/= 0 ) ) -> ( ( A + B ) / D ) = ( ( A / D ) + ( B / D ) ) ) |
|
| 7 | 1 2 5 6 | syl3an | |- ( ( A e. ZZ /\ B e. ZZ /\ D e. NN ) -> ( ( A + B ) / D ) = ( ( A / D ) + ( B / D ) ) ) |
| 8 | 7 | 3comr | |- ( ( D e. NN /\ A e. ZZ /\ B e. ZZ ) -> ( ( A + B ) / D ) = ( ( A / D ) + ( B / D ) ) ) |
| 9 | 8 | adantr | |- ( ( ( D e. NN /\ A e. ZZ /\ B e. ZZ ) /\ ( ( A / D ) e. ZZ /\ ( B / D ) e. ZZ ) ) -> ( ( A + B ) / D ) = ( ( A / D ) + ( B / D ) ) ) |
| 10 | zaddcl | |- ( ( ( A / D ) e. ZZ /\ ( B / D ) e. ZZ ) -> ( ( A / D ) + ( B / D ) ) e. ZZ ) |
|
| 11 | 10 | adantl | |- ( ( ( D e. NN /\ A e. ZZ /\ B e. ZZ ) /\ ( ( A / D ) e. ZZ /\ ( B / D ) e. ZZ ) ) -> ( ( A / D ) + ( B / D ) ) e. ZZ ) |
| 12 | 9 11 | eqeltrd | |- ( ( ( D e. NN /\ A e. ZZ /\ B e. ZZ ) /\ ( ( A / D ) e. ZZ /\ ( B / D ) e. ZZ ) ) -> ( ( A + B ) / D ) e. ZZ ) |