This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The "multiplicative group" of the extended reals is a commutative monoid (even though the "additive group" is not a semigroup, see xrsmgmdifsgrp .) (Contributed by Mario Carneiro, 21-Aug-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | xrsmcmn | |- ( mulGrp ` RR*s ) e. CMnd |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid | |- ( mulGrp ` RR*s ) = ( mulGrp ` RR*s ) |
|
| 2 | xrsbas | |- RR* = ( Base ` RR*s ) |
|
| 3 | 1 2 | mgpbas | |- RR* = ( Base ` ( mulGrp ` RR*s ) ) |
| 4 | 3 | a1i | |- ( T. -> RR* = ( Base ` ( mulGrp ` RR*s ) ) ) |
| 5 | xrsmul | |- *e = ( .r ` RR*s ) |
|
| 6 | 1 5 | mgpplusg | |- *e = ( +g ` ( mulGrp ` RR*s ) ) |
| 7 | 6 | a1i | |- ( T. -> *e = ( +g ` ( mulGrp ` RR*s ) ) ) |
| 8 | xmulcl | |- ( ( x e. RR* /\ y e. RR* ) -> ( x *e y ) e. RR* ) |
|
| 9 | 8 | 3adant1 | |- ( ( T. /\ x e. RR* /\ y e. RR* ) -> ( x *e y ) e. RR* ) |
| 10 | xmulass | |- ( ( x e. RR* /\ y e. RR* /\ z e. RR* ) -> ( ( x *e y ) *e z ) = ( x *e ( y *e z ) ) ) |
|
| 11 | 10 | adantl | |- ( ( T. /\ ( x e. RR* /\ y e. RR* /\ z e. RR* ) ) -> ( ( x *e y ) *e z ) = ( x *e ( y *e z ) ) ) |
| 12 | 1re | |- 1 e. RR |
|
| 13 | rexr | |- ( 1 e. RR -> 1 e. RR* ) |
|
| 14 | 12 13 | mp1i | |- ( T. -> 1 e. RR* ) |
| 15 | xmullid | |- ( x e. RR* -> ( 1 *e x ) = x ) |
|
| 16 | 15 | adantl | |- ( ( T. /\ x e. RR* ) -> ( 1 *e x ) = x ) |
| 17 | xmulrid | |- ( x e. RR* -> ( x *e 1 ) = x ) |
|
| 18 | 17 | adantl | |- ( ( T. /\ x e. RR* ) -> ( x *e 1 ) = x ) |
| 19 | 4 7 9 11 14 16 18 | ismndd | |- ( T. -> ( mulGrp ` RR*s ) e. Mnd ) |
| 20 | xmulcom | |- ( ( x e. RR* /\ y e. RR* ) -> ( x *e y ) = ( y *e x ) ) |
|
| 21 | 20 | 3adant1 | |- ( ( T. /\ x e. RR* /\ y e. RR* ) -> ( x *e y ) = ( y *e x ) ) |
| 22 | 4 7 19 21 | iscmnd | |- ( T. -> ( mulGrp ` RR*s ) e. CMnd ) |
| 23 | 22 | mptru | |- ( mulGrp ` RR*s ) e. CMnd |