This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Extended real multiplication is commutative. (Contributed by Mario Carneiro, 20-Aug-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | xmulcom | |- ( ( A e. RR* /\ B e. RR* ) -> ( A *e B ) = ( B *e A ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | xmullem | |- ( ( ( ( ( A e. RR* /\ B e. RR* ) /\ -. ( A = 0 \/ B = 0 ) ) /\ -. ( ( ( 0 < B /\ A = +oo ) \/ ( B < 0 /\ A = -oo ) ) \/ ( ( 0 < A /\ B = +oo ) \/ ( A < 0 /\ B = -oo ) ) ) ) /\ -. ( ( ( 0 < B /\ A = -oo ) \/ ( B < 0 /\ A = +oo ) ) \/ ( ( 0 < A /\ B = -oo ) \/ ( A < 0 /\ B = +oo ) ) ) ) -> A e. RR ) |
|
| 2 | 1 | recnd | |- ( ( ( ( ( A e. RR* /\ B e. RR* ) /\ -. ( A = 0 \/ B = 0 ) ) /\ -. ( ( ( 0 < B /\ A = +oo ) \/ ( B < 0 /\ A = -oo ) ) \/ ( ( 0 < A /\ B = +oo ) \/ ( A < 0 /\ B = -oo ) ) ) ) /\ -. ( ( ( 0 < B /\ A = -oo ) \/ ( B < 0 /\ A = +oo ) ) \/ ( ( 0 < A /\ B = -oo ) \/ ( A < 0 /\ B = +oo ) ) ) ) -> A e. CC ) |
| 3 | ancom | |- ( ( A e. RR* /\ B e. RR* ) <-> ( B e. RR* /\ A e. RR* ) ) |
|
| 4 | orcom | |- ( ( A = 0 \/ B = 0 ) <-> ( B = 0 \/ A = 0 ) ) |
|
| 5 | 4 | notbii | |- ( -. ( A = 0 \/ B = 0 ) <-> -. ( B = 0 \/ A = 0 ) ) |
| 6 | 3 5 | anbi12i | |- ( ( ( A e. RR* /\ B e. RR* ) /\ -. ( A = 0 \/ B = 0 ) ) <-> ( ( B e. RR* /\ A e. RR* ) /\ -. ( B = 0 \/ A = 0 ) ) ) |
| 7 | orcom | |- ( ( ( ( 0 < B /\ A = +oo ) \/ ( B < 0 /\ A = -oo ) ) \/ ( ( 0 < A /\ B = +oo ) \/ ( A < 0 /\ B = -oo ) ) ) <-> ( ( ( 0 < A /\ B = +oo ) \/ ( A < 0 /\ B = -oo ) ) \/ ( ( 0 < B /\ A = +oo ) \/ ( B < 0 /\ A = -oo ) ) ) ) |
|
| 8 | 7 | notbii | |- ( -. ( ( ( 0 < B /\ A = +oo ) \/ ( B < 0 /\ A = -oo ) ) \/ ( ( 0 < A /\ B = +oo ) \/ ( A < 0 /\ B = -oo ) ) ) <-> -. ( ( ( 0 < A /\ B = +oo ) \/ ( A < 0 /\ B = -oo ) ) \/ ( ( 0 < B /\ A = +oo ) \/ ( B < 0 /\ A = -oo ) ) ) ) |
| 9 | 6 8 | anbi12i | |- ( ( ( ( A e. RR* /\ B e. RR* ) /\ -. ( A = 0 \/ B = 0 ) ) /\ -. ( ( ( 0 < B /\ A = +oo ) \/ ( B < 0 /\ A = -oo ) ) \/ ( ( 0 < A /\ B = +oo ) \/ ( A < 0 /\ B = -oo ) ) ) ) <-> ( ( ( B e. RR* /\ A e. RR* ) /\ -. ( B = 0 \/ A = 0 ) ) /\ -. ( ( ( 0 < A /\ B = +oo ) \/ ( A < 0 /\ B = -oo ) ) \/ ( ( 0 < B /\ A = +oo ) \/ ( B < 0 /\ A = -oo ) ) ) ) ) |
| 10 | orcom | |- ( ( ( ( 0 < B /\ A = -oo ) \/ ( B < 0 /\ A = +oo ) ) \/ ( ( 0 < A /\ B = -oo ) \/ ( A < 0 /\ B = +oo ) ) ) <-> ( ( ( 0 < A /\ B = -oo ) \/ ( A < 0 /\ B = +oo ) ) \/ ( ( 0 < B /\ A = -oo ) \/ ( B < 0 /\ A = +oo ) ) ) ) |
|
| 11 | 10 | notbii | |- ( -. ( ( ( 0 < B /\ A = -oo ) \/ ( B < 0 /\ A = +oo ) ) \/ ( ( 0 < A /\ B = -oo ) \/ ( A < 0 /\ B = +oo ) ) ) <-> -. ( ( ( 0 < A /\ B = -oo ) \/ ( A < 0 /\ B = +oo ) ) \/ ( ( 0 < B /\ A = -oo ) \/ ( B < 0 /\ A = +oo ) ) ) ) |
| 12 | xmullem | |- ( ( ( ( ( B e. RR* /\ A e. RR* ) /\ -. ( B = 0 \/ A = 0 ) ) /\ -. ( ( ( 0 < A /\ B = +oo ) \/ ( A < 0 /\ B = -oo ) ) \/ ( ( 0 < B /\ A = +oo ) \/ ( B < 0 /\ A = -oo ) ) ) ) /\ -. ( ( ( 0 < A /\ B = -oo ) \/ ( A < 0 /\ B = +oo ) ) \/ ( ( 0 < B /\ A = -oo ) \/ ( B < 0 /\ A = +oo ) ) ) ) -> B e. RR ) |
|
| 13 | 9 11 12 | syl2anb | |- ( ( ( ( ( A e. RR* /\ B e. RR* ) /\ -. ( A = 0 \/ B = 0 ) ) /\ -. ( ( ( 0 < B /\ A = +oo ) \/ ( B < 0 /\ A = -oo ) ) \/ ( ( 0 < A /\ B = +oo ) \/ ( A < 0 /\ B = -oo ) ) ) ) /\ -. ( ( ( 0 < B /\ A = -oo ) \/ ( B < 0 /\ A = +oo ) ) \/ ( ( 0 < A /\ B = -oo ) \/ ( A < 0 /\ B = +oo ) ) ) ) -> B e. RR ) |
| 14 | 13 | recnd | |- ( ( ( ( ( A e. RR* /\ B e. RR* ) /\ -. ( A = 0 \/ B = 0 ) ) /\ -. ( ( ( 0 < B /\ A = +oo ) \/ ( B < 0 /\ A = -oo ) ) \/ ( ( 0 < A /\ B = +oo ) \/ ( A < 0 /\ B = -oo ) ) ) ) /\ -. ( ( ( 0 < B /\ A = -oo ) \/ ( B < 0 /\ A = +oo ) ) \/ ( ( 0 < A /\ B = -oo ) \/ ( A < 0 /\ B = +oo ) ) ) ) -> B e. CC ) |
| 15 | 2 14 | mulcomd | |- ( ( ( ( ( A e. RR* /\ B e. RR* ) /\ -. ( A = 0 \/ B = 0 ) ) /\ -. ( ( ( 0 < B /\ A = +oo ) \/ ( B < 0 /\ A = -oo ) ) \/ ( ( 0 < A /\ B = +oo ) \/ ( A < 0 /\ B = -oo ) ) ) ) /\ -. ( ( ( 0 < B /\ A = -oo ) \/ ( B < 0 /\ A = +oo ) ) \/ ( ( 0 < A /\ B = -oo ) \/ ( A < 0 /\ B = +oo ) ) ) ) -> ( A x. B ) = ( B x. A ) ) |
| 16 | 15 | ifeq2da | |- ( ( ( ( A e. RR* /\ B e. RR* ) /\ -. ( A = 0 \/ B = 0 ) ) /\ -. ( ( ( 0 < B /\ A = +oo ) \/ ( B < 0 /\ A = -oo ) ) \/ ( ( 0 < A /\ B = +oo ) \/ ( A < 0 /\ B = -oo ) ) ) ) -> if ( ( ( ( 0 < B /\ A = -oo ) \/ ( B < 0 /\ A = +oo ) ) \/ ( ( 0 < A /\ B = -oo ) \/ ( A < 0 /\ B = +oo ) ) ) , -oo , ( A x. B ) ) = if ( ( ( ( 0 < B /\ A = -oo ) \/ ( B < 0 /\ A = +oo ) ) \/ ( ( 0 < A /\ B = -oo ) \/ ( A < 0 /\ B = +oo ) ) ) , -oo , ( B x. A ) ) ) |
| 17 | 10 | a1i | |- ( ( ( ( A e. RR* /\ B e. RR* ) /\ -. ( A = 0 \/ B = 0 ) ) /\ -. ( ( ( 0 < B /\ A = +oo ) \/ ( B < 0 /\ A = -oo ) ) \/ ( ( 0 < A /\ B = +oo ) \/ ( A < 0 /\ B = -oo ) ) ) ) -> ( ( ( ( 0 < B /\ A = -oo ) \/ ( B < 0 /\ A = +oo ) ) \/ ( ( 0 < A /\ B = -oo ) \/ ( A < 0 /\ B = +oo ) ) ) <-> ( ( ( 0 < A /\ B = -oo ) \/ ( A < 0 /\ B = +oo ) ) \/ ( ( 0 < B /\ A = -oo ) \/ ( B < 0 /\ A = +oo ) ) ) ) ) |
| 18 | 17 | ifbid | |- ( ( ( ( A e. RR* /\ B e. RR* ) /\ -. ( A = 0 \/ B = 0 ) ) /\ -. ( ( ( 0 < B /\ A = +oo ) \/ ( B < 0 /\ A = -oo ) ) \/ ( ( 0 < A /\ B = +oo ) \/ ( A < 0 /\ B = -oo ) ) ) ) -> if ( ( ( ( 0 < B /\ A = -oo ) \/ ( B < 0 /\ A = +oo ) ) \/ ( ( 0 < A /\ B = -oo ) \/ ( A < 0 /\ B = +oo ) ) ) , -oo , ( B x. A ) ) = if ( ( ( ( 0 < A /\ B = -oo ) \/ ( A < 0 /\ B = +oo ) ) \/ ( ( 0 < B /\ A = -oo ) \/ ( B < 0 /\ A = +oo ) ) ) , -oo , ( B x. A ) ) ) |
| 19 | 16 18 | eqtrd | |- ( ( ( ( A e. RR* /\ B e. RR* ) /\ -. ( A = 0 \/ B = 0 ) ) /\ -. ( ( ( 0 < B /\ A = +oo ) \/ ( B < 0 /\ A = -oo ) ) \/ ( ( 0 < A /\ B = +oo ) \/ ( A < 0 /\ B = -oo ) ) ) ) -> if ( ( ( ( 0 < B /\ A = -oo ) \/ ( B < 0 /\ A = +oo ) ) \/ ( ( 0 < A /\ B = -oo ) \/ ( A < 0 /\ B = +oo ) ) ) , -oo , ( A x. B ) ) = if ( ( ( ( 0 < A /\ B = -oo ) \/ ( A < 0 /\ B = +oo ) ) \/ ( ( 0 < B /\ A = -oo ) \/ ( B < 0 /\ A = +oo ) ) ) , -oo , ( B x. A ) ) ) |
| 20 | 19 | ifeq2da | |- ( ( ( A e. RR* /\ B e. RR* ) /\ -. ( A = 0 \/ B = 0 ) ) -> if ( ( ( ( 0 < B /\ A = +oo ) \/ ( B < 0 /\ A = -oo ) ) \/ ( ( 0 < A /\ B = +oo ) \/ ( A < 0 /\ B = -oo ) ) ) , +oo , if ( ( ( ( 0 < B /\ A = -oo ) \/ ( B < 0 /\ A = +oo ) ) \/ ( ( 0 < A /\ B = -oo ) \/ ( A < 0 /\ B = +oo ) ) ) , -oo , ( A x. B ) ) ) = if ( ( ( ( 0 < B /\ A = +oo ) \/ ( B < 0 /\ A = -oo ) ) \/ ( ( 0 < A /\ B = +oo ) \/ ( A < 0 /\ B = -oo ) ) ) , +oo , if ( ( ( ( 0 < A /\ B = -oo ) \/ ( A < 0 /\ B = +oo ) ) \/ ( ( 0 < B /\ A = -oo ) \/ ( B < 0 /\ A = +oo ) ) ) , -oo , ( B x. A ) ) ) ) |
| 21 | 7 | a1i | |- ( ( ( A e. RR* /\ B e. RR* ) /\ -. ( A = 0 \/ B = 0 ) ) -> ( ( ( ( 0 < B /\ A = +oo ) \/ ( B < 0 /\ A = -oo ) ) \/ ( ( 0 < A /\ B = +oo ) \/ ( A < 0 /\ B = -oo ) ) ) <-> ( ( ( 0 < A /\ B = +oo ) \/ ( A < 0 /\ B = -oo ) ) \/ ( ( 0 < B /\ A = +oo ) \/ ( B < 0 /\ A = -oo ) ) ) ) ) |
| 22 | 21 | ifbid | |- ( ( ( A e. RR* /\ B e. RR* ) /\ -. ( A = 0 \/ B = 0 ) ) -> if ( ( ( ( 0 < B /\ A = +oo ) \/ ( B < 0 /\ A = -oo ) ) \/ ( ( 0 < A /\ B = +oo ) \/ ( A < 0 /\ B = -oo ) ) ) , +oo , if ( ( ( ( 0 < A /\ B = -oo ) \/ ( A < 0 /\ B = +oo ) ) \/ ( ( 0 < B /\ A = -oo ) \/ ( B < 0 /\ A = +oo ) ) ) , -oo , ( B x. A ) ) ) = if ( ( ( ( 0 < A /\ B = +oo ) \/ ( A < 0 /\ B = -oo ) ) \/ ( ( 0 < B /\ A = +oo ) \/ ( B < 0 /\ A = -oo ) ) ) , +oo , if ( ( ( ( 0 < A /\ B = -oo ) \/ ( A < 0 /\ B = +oo ) ) \/ ( ( 0 < B /\ A = -oo ) \/ ( B < 0 /\ A = +oo ) ) ) , -oo , ( B x. A ) ) ) ) |
| 23 | 20 22 | eqtrd | |- ( ( ( A e. RR* /\ B e. RR* ) /\ -. ( A = 0 \/ B = 0 ) ) -> if ( ( ( ( 0 < B /\ A = +oo ) \/ ( B < 0 /\ A = -oo ) ) \/ ( ( 0 < A /\ B = +oo ) \/ ( A < 0 /\ B = -oo ) ) ) , +oo , if ( ( ( ( 0 < B /\ A = -oo ) \/ ( B < 0 /\ A = +oo ) ) \/ ( ( 0 < A /\ B = -oo ) \/ ( A < 0 /\ B = +oo ) ) ) , -oo , ( A x. B ) ) ) = if ( ( ( ( 0 < A /\ B = +oo ) \/ ( A < 0 /\ B = -oo ) ) \/ ( ( 0 < B /\ A = +oo ) \/ ( B < 0 /\ A = -oo ) ) ) , +oo , if ( ( ( ( 0 < A /\ B = -oo ) \/ ( A < 0 /\ B = +oo ) ) \/ ( ( 0 < B /\ A = -oo ) \/ ( B < 0 /\ A = +oo ) ) ) , -oo , ( B x. A ) ) ) ) |
| 24 | 23 | ifeq2da | |- ( ( A e. RR* /\ B e. RR* ) -> if ( ( A = 0 \/ B = 0 ) , 0 , if ( ( ( ( 0 < B /\ A = +oo ) \/ ( B < 0 /\ A = -oo ) ) \/ ( ( 0 < A /\ B = +oo ) \/ ( A < 0 /\ B = -oo ) ) ) , +oo , if ( ( ( ( 0 < B /\ A = -oo ) \/ ( B < 0 /\ A = +oo ) ) \/ ( ( 0 < A /\ B = -oo ) \/ ( A < 0 /\ B = +oo ) ) ) , -oo , ( A x. B ) ) ) ) = if ( ( A = 0 \/ B = 0 ) , 0 , if ( ( ( ( 0 < A /\ B = +oo ) \/ ( A < 0 /\ B = -oo ) ) \/ ( ( 0 < B /\ A = +oo ) \/ ( B < 0 /\ A = -oo ) ) ) , +oo , if ( ( ( ( 0 < A /\ B = -oo ) \/ ( A < 0 /\ B = +oo ) ) \/ ( ( 0 < B /\ A = -oo ) \/ ( B < 0 /\ A = +oo ) ) ) , -oo , ( B x. A ) ) ) ) ) |
| 25 | 4 | a1i | |- ( ( A e. RR* /\ B e. RR* ) -> ( ( A = 0 \/ B = 0 ) <-> ( B = 0 \/ A = 0 ) ) ) |
| 26 | 25 | ifbid | |- ( ( A e. RR* /\ B e. RR* ) -> if ( ( A = 0 \/ B = 0 ) , 0 , if ( ( ( ( 0 < A /\ B = +oo ) \/ ( A < 0 /\ B = -oo ) ) \/ ( ( 0 < B /\ A = +oo ) \/ ( B < 0 /\ A = -oo ) ) ) , +oo , if ( ( ( ( 0 < A /\ B = -oo ) \/ ( A < 0 /\ B = +oo ) ) \/ ( ( 0 < B /\ A = -oo ) \/ ( B < 0 /\ A = +oo ) ) ) , -oo , ( B x. A ) ) ) ) = if ( ( B = 0 \/ A = 0 ) , 0 , if ( ( ( ( 0 < A /\ B = +oo ) \/ ( A < 0 /\ B = -oo ) ) \/ ( ( 0 < B /\ A = +oo ) \/ ( B < 0 /\ A = -oo ) ) ) , +oo , if ( ( ( ( 0 < A /\ B = -oo ) \/ ( A < 0 /\ B = +oo ) ) \/ ( ( 0 < B /\ A = -oo ) \/ ( B < 0 /\ A = +oo ) ) ) , -oo , ( B x. A ) ) ) ) ) |
| 27 | 24 26 | eqtrd | |- ( ( A e. RR* /\ B e. RR* ) -> if ( ( A = 0 \/ B = 0 ) , 0 , if ( ( ( ( 0 < B /\ A = +oo ) \/ ( B < 0 /\ A = -oo ) ) \/ ( ( 0 < A /\ B = +oo ) \/ ( A < 0 /\ B = -oo ) ) ) , +oo , if ( ( ( ( 0 < B /\ A = -oo ) \/ ( B < 0 /\ A = +oo ) ) \/ ( ( 0 < A /\ B = -oo ) \/ ( A < 0 /\ B = +oo ) ) ) , -oo , ( A x. B ) ) ) ) = if ( ( B = 0 \/ A = 0 ) , 0 , if ( ( ( ( 0 < A /\ B = +oo ) \/ ( A < 0 /\ B = -oo ) ) \/ ( ( 0 < B /\ A = +oo ) \/ ( B < 0 /\ A = -oo ) ) ) , +oo , if ( ( ( ( 0 < A /\ B = -oo ) \/ ( A < 0 /\ B = +oo ) ) \/ ( ( 0 < B /\ A = -oo ) \/ ( B < 0 /\ A = +oo ) ) ) , -oo , ( B x. A ) ) ) ) ) |
| 28 | xmulval | |- ( ( A e. RR* /\ B e. RR* ) -> ( A *e B ) = if ( ( A = 0 \/ B = 0 ) , 0 , if ( ( ( ( 0 < B /\ A = +oo ) \/ ( B < 0 /\ A = -oo ) ) \/ ( ( 0 < A /\ B = +oo ) \/ ( A < 0 /\ B = -oo ) ) ) , +oo , if ( ( ( ( 0 < B /\ A = -oo ) \/ ( B < 0 /\ A = +oo ) ) \/ ( ( 0 < A /\ B = -oo ) \/ ( A < 0 /\ B = +oo ) ) ) , -oo , ( A x. B ) ) ) ) ) |
|
| 29 | xmulval | |- ( ( B e. RR* /\ A e. RR* ) -> ( B *e A ) = if ( ( B = 0 \/ A = 0 ) , 0 , if ( ( ( ( 0 < A /\ B = +oo ) \/ ( A < 0 /\ B = -oo ) ) \/ ( ( 0 < B /\ A = +oo ) \/ ( B < 0 /\ A = -oo ) ) ) , +oo , if ( ( ( ( 0 < A /\ B = -oo ) \/ ( A < 0 /\ B = +oo ) ) \/ ( ( 0 < B /\ A = -oo ) \/ ( B < 0 /\ A = +oo ) ) ) , -oo , ( B x. A ) ) ) ) ) |
|
| 30 | 29 | ancoms | |- ( ( A e. RR* /\ B e. RR* ) -> ( B *e A ) = if ( ( B = 0 \/ A = 0 ) , 0 , if ( ( ( ( 0 < A /\ B = +oo ) \/ ( A < 0 /\ B = -oo ) ) \/ ( ( 0 < B /\ A = +oo ) \/ ( B < 0 /\ A = -oo ) ) ) , +oo , if ( ( ( ( 0 < A /\ B = -oo ) \/ ( A < 0 /\ B = +oo ) ) \/ ( ( 0 < B /\ A = -oo ) \/ ( B < 0 /\ A = +oo ) ) ) , -oo , ( B x. A ) ) ) ) ) |
| 31 | 27 28 30 | 3eqtr4d | |- ( ( A e. RR* /\ B e. RR* ) -> ( A *e B ) = ( B *e A ) ) |