This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The "multiplicative group" of the extended reals is a commutative monoid (even though the "additive group" is not a semigroup, see xrsmgmdifsgrp .) (Contributed by Mario Carneiro, 21-Aug-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | xrsmcmn | ⊢ ( mulGrp ‘ ℝ*𝑠 ) ∈ CMnd |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid | ⊢ ( mulGrp ‘ ℝ*𝑠 ) = ( mulGrp ‘ ℝ*𝑠 ) | |
| 2 | xrsbas | ⊢ ℝ* = ( Base ‘ ℝ*𝑠 ) | |
| 3 | 1 2 | mgpbas | ⊢ ℝ* = ( Base ‘ ( mulGrp ‘ ℝ*𝑠 ) ) |
| 4 | 3 | a1i | ⊢ ( ⊤ → ℝ* = ( Base ‘ ( mulGrp ‘ ℝ*𝑠 ) ) ) |
| 5 | xrsmul | ⊢ ·e = ( .r ‘ ℝ*𝑠 ) | |
| 6 | 1 5 | mgpplusg | ⊢ ·e = ( +g ‘ ( mulGrp ‘ ℝ*𝑠 ) ) |
| 7 | 6 | a1i | ⊢ ( ⊤ → ·e = ( +g ‘ ( mulGrp ‘ ℝ*𝑠 ) ) ) |
| 8 | xmulcl | ⊢ ( ( 𝑥 ∈ ℝ* ∧ 𝑦 ∈ ℝ* ) → ( 𝑥 ·e 𝑦 ) ∈ ℝ* ) | |
| 9 | 8 | 3adant1 | ⊢ ( ( ⊤ ∧ 𝑥 ∈ ℝ* ∧ 𝑦 ∈ ℝ* ) → ( 𝑥 ·e 𝑦 ) ∈ ℝ* ) |
| 10 | xmulass | ⊢ ( ( 𝑥 ∈ ℝ* ∧ 𝑦 ∈ ℝ* ∧ 𝑧 ∈ ℝ* ) → ( ( 𝑥 ·e 𝑦 ) ·e 𝑧 ) = ( 𝑥 ·e ( 𝑦 ·e 𝑧 ) ) ) | |
| 11 | 10 | adantl | ⊢ ( ( ⊤ ∧ ( 𝑥 ∈ ℝ* ∧ 𝑦 ∈ ℝ* ∧ 𝑧 ∈ ℝ* ) ) → ( ( 𝑥 ·e 𝑦 ) ·e 𝑧 ) = ( 𝑥 ·e ( 𝑦 ·e 𝑧 ) ) ) |
| 12 | 1re | ⊢ 1 ∈ ℝ | |
| 13 | rexr | ⊢ ( 1 ∈ ℝ → 1 ∈ ℝ* ) | |
| 14 | 12 13 | mp1i | ⊢ ( ⊤ → 1 ∈ ℝ* ) |
| 15 | xmullid | ⊢ ( 𝑥 ∈ ℝ* → ( 1 ·e 𝑥 ) = 𝑥 ) | |
| 16 | 15 | adantl | ⊢ ( ( ⊤ ∧ 𝑥 ∈ ℝ* ) → ( 1 ·e 𝑥 ) = 𝑥 ) |
| 17 | xmulrid | ⊢ ( 𝑥 ∈ ℝ* → ( 𝑥 ·e 1 ) = 𝑥 ) | |
| 18 | 17 | adantl | ⊢ ( ( ⊤ ∧ 𝑥 ∈ ℝ* ) → ( 𝑥 ·e 1 ) = 𝑥 ) |
| 19 | 4 7 9 11 14 16 18 | ismndd | ⊢ ( ⊤ → ( mulGrp ‘ ℝ*𝑠 ) ∈ Mnd ) |
| 20 | xmulcom | ⊢ ( ( 𝑥 ∈ ℝ* ∧ 𝑦 ∈ ℝ* ) → ( 𝑥 ·e 𝑦 ) = ( 𝑦 ·e 𝑥 ) ) | |
| 21 | 20 | 3adant1 | ⊢ ( ( ⊤ ∧ 𝑥 ∈ ℝ* ∧ 𝑦 ∈ ℝ* ) → ( 𝑥 ·e 𝑦 ) = ( 𝑦 ·e 𝑥 ) ) |
| 22 | 4 7 19 21 | iscmnd | ⊢ ( ⊤ → ( mulGrp ‘ ℝ*𝑠 ) ∈ CMnd ) |
| 23 | 22 | mptru | ⊢ ( mulGrp ‘ ℝ*𝑠 ) ∈ CMnd |