This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The metric on the extended reals coincides with the usual metric on the reals. (Contributed by Mario Carneiro, 4-Sep-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | xrsxmet.1 | |- D = ( dist ` RR*s ) |
|
| Assertion | xrsdsre | |- ( D |` ( RR X. RR ) ) = ( ( abs o. - ) |` ( RR X. RR ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | xrsxmet.1 | |- D = ( dist ` RR*s ) |
|
| 2 | 1 | xrsdsreval | |- ( ( x e. RR /\ y e. RR ) -> ( x D y ) = ( abs ` ( x - y ) ) ) |
| 3 | ovres | |- ( ( x e. RR /\ y e. RR ) -> ( x ( D |` ( RR X. RR ) ) y ) = ( x D y ) ) |
|
| 4 | eqid | |- ( ( abs o. - ) |` ( RR X. RR ) ) = ( ( abs o. - ) |` ( RR X. RR ) ) |
|
| 5 | 4 | remetdval | |- ( ( x e. RR /\ y e. RR ) -> ( x ( ( abs o. - ) |` ( RR X. RR ) ) y ) = ( abs ` ( x - y ) ) ) |
| 6 | 2 3 5 | 3eqtr4d | |- ( ( x e. RR /\ y e. RR ) -> ( x ( D |` ( RR X. RR ) ) y ) = ( x ( ( abs o. - ) |` ( RR X. RR ) ) y ) ) |
| 7 | 6 | rgen2 | |- A. x e. RR A. y e. RR ( x ( D |` ( RR X. RR ) ) y ) = ( x ( ( abs o. - ) |` ( RR X. RR ) ) y ) |
| 8 | 1 | xrsxmet | |- D e. ( *Met ` RR* ) |
| 9 | xmetf | |- ( D e. ( *Met ` RR* ) -> D : ( RR* X. RR* ) --> RR* ) |
|
| 10 | ffn | |- ( D : ( RR* X. RR* ) --> RR* -> D Fn ( RR* X. RR* ) ) |
|
| 11 | 8 9 10 | mp2b | |- D Fn ( RR* X. RR* ) |
| 12 | rexpssxrxp | |- ( RR X. RR ) C_ ( RR* X. RR* ) |
|
| 13 | fnssres | |- ( ( D Fn ( RR* X. RR* ) /\ ( RR X. RR ) C_ ( RR* X. RR* ) ) -> ( D |` ( RR X. RR ) ) Fn ( RR X. RR ) ) |
|
| 14 | 11 12 13 | mp2an | |- ( D |` ( RR X. RR ) ) Fn ( RR X. RR ) |
| 15 | cnmet | |- ( abs o. - ) e. ( Met ` CC ) |
|
| 16 | metf | |- ( ( abs o. - ) e. ( Met ` CC ) -> ( abs o. - ) : ( CC X. CC ) --> RR ) |
|
| 17 | ffn | |- ( ( abs o. - ) : ( CC X. CC ) --> RR -> ( abs o. - ) Fn ( CC X. CC ) ) |
|
| 18 | 15 16 17 | mp2b | |- ( abs o. - ) Fn ( CC X. CC ) |
| 19 | ax-resscn | |- RR C_ CC |
|
| 20 | xpss12 | |- ( ( RR C_ CC /\ RR C_ CC ) -> ( RR X. RR ) C_ ( CC X. CC ) ) |
|
| 21 | 19 19 20 | mp2an | |- ( RR X. RR ) C_ ( CC X. CC ) |
| 22 | fnssres | |- ( ( ( abs o. - ) Fn ( CC X. CC ) /\ ( RR X. RR ) C_ ( CC X. CC ) ) -> ( ( abs o. - ) |` ( RR X. RR ) ) Fn ( RR X. RR ) ) |
|
| 23 | 18 21 22 | mp2an | |- ( ( abs o. - ) |` ( RR X. RR ) ) Fn ( RR X. RR ) |
| 24 | eqfnov2 | |- ( ( ( D |` ( RR X. RR ) ) Fn ( RR X. RR ) /\ ( ( abs o. - ) |` ( RR X. RR ) ) Fn ( RR X. RR ) ) -> ( ( D |` ( RR X. RR ) ) = ( ( abs o. - ) |` ( RR X. RR ) ) <-> A. x e. RR A. y e. RR ( x ( D |` ( RR X. RR ) ) y ) = ( x ( ( abs o. - ) |` ( RR X. RR ) ) y ) ) ) |
|
| 25 | 14 23 24 | mp2an | |- ( ( D |` ( RR X. RR ) ) = ( ( abs o. - ) |` ( RR X. RR ) ) <-> A. x e. RR A. y e. RR ( x ( D |` ( RR X. RR ) ) y ) = ( x ( ( abs o. - ) |` ( RR X. RR ) ) y ) ) |
| 26 | 7 25 | mpbir | |- ( D |` ( RR X. RR ) ) = ( ( abs o. - ) |` ( RR X. RR ) ) |