This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Any ball of the metric of the extended reals centered on an element of RR is entirely contained in RR . (Contributed by Mario Carneiro, 4-Sep-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | xrsxmet.1 | |- D = ( dist ` RR*s ) |
|
| Assertion | xrsblre | |- ( ( P e. RR /\ R e. RR* ) -> ( P ( ball ` D ) R ) C_ RR ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | xrsxmet.1 | |- D = ( dist ` RR*s ) |
|
| 2 | rexr | |- ( P e. RR -> P e. RR* ) |
|
| 3 | 1 | xrsxmet | |- D e. ( *Met ` RR* ) |
| 4 | eqid | |- ( `' D " RR ) = ( `' D " RR ) |
|
| 5 | 4 | blssec | |- ( ( D e. ( *Met ` RR* ) /\ P e. RR* /\ R e. RR* ) -> ( P ( ball ` D ) R ) C_ [ P ] ( `' D " RR ) ) |
| 6 | 3 5 | mp3an1 | |- ( ( P e. RR* /\ R e. RR* ) -> ( P ( ball ` D ) R ) C_ [ P ] ( `' D " RR ) ) |
| 7 | 2 6 | sylan | |- ( ( P e. RR /\ R e. RR* ) -> ( P ( ball ` D ) R ) C_ [ P ] ( `' D " RR ) ) |
| 8 | vex | |- x e. _V |
|
| 9 | simpl | |- ( ( P e. RR /\ R e. RR* ) -> P e. RR ) |
|
| 10 | elecg | |- ( ( x e. _V /\ P e. RR ) -> ( x e. [ P ] ( `' D " RR ) <-> P ( `' D " RR ) x ) ) |
|
| 11 | 8 9 10 | sylancr | |- ( ( P e. RR /\ R e. RR* ) -> ( x e. [ P ] ( `' D " RR ) <-> P ( `' D " RR ) x ) ) |
| 12 | 4 | xmeterval | |- ( D e. ( *Met ` RR* ) -> ( P ( `' D " RR ) x <-> ( P e. RR* /\ x e. RR* /\ ( P D x ) e. RR ) ) ) |
| 13 | 3 12 | ax-mp | |- ( P ( `' D " RR ) x <-> ( P e. RR* /\ x e. RR* /\ ( P D x ) e. RR ) ) |
| 14 | simpr | |- ( ( ( ( P e. RR /\ R e. RR* ) /\ ( P e. RR* /\ x e. RR* /\ ( P D x ) e. RR ) ) /\ P = x ) -> P = x ) |
|
| 15 | simplll | |- ( ( ( ( P e. RR /\ R e. RR* ) /\ ( P e. RR* /\ x e. RR* /\ ( P D x ) e. RR ) ) /\ P = x ) -> P e. RR ) |
|
| 16 | 14 15 | eqeltrrd | |- ( ( ( ( P e. RR /\ R e. RR* ) /\ ( P e. RR* /\ x e. RR* /\ ( P D x ) e. RR ) ) /\ P = x ) -> x e. RR ) |
| 17 | simplr3 | |- ( ( ( ( P e. RR /\ R e. RR* ) /\ ( P e. RR* /\ x e. RR* /\ ( P D x ) e. RR ) ) /\ P =/= x ) -> ( P D x ) e. RR ) |
|
| 18 | simplr1 | |- ( ( ( ( P e. RR /\ R e. RR* ) /\ ( P e. RR* /\ x e. RR* /\ ( P D x ) e. RR ) ) /\ P =/= x ) -> P e. RR* ) |
|
| 19 | simplr2 | |- ( ( ( ( P e. RR /\ R e. RR* ) /\ ( P e. RR* /\ x e. RR* /\ ( P D x ) e. RR ) ) /\ P =/= x ) -> x e. RR* ) |
|
| 20 | simpr | |- ( ( ( ( P e. RR /\ R e. RR* ) /\ ( P e. RR* /\ x e. RR* /\ ( P D x ) e. RR ) ) /\ P =/= x ) -> P =/= x ) |
|
| 21 | 1 | xrsdsreclb | |- ( ( P e. RR* /\ x e. RR* /\ P =/= x ) -> ( ( P D x ) e. RR <-> ( P e. RR /\ x e. RR ) ) ) |
| 22 | 18 19 20 21 | syl3anc | |- ( ( ( ( P e. RR /\ R e. RR* ) /\ ( P e. RR* /\ x e. RR* /\ ( P D x ) e. RR ) ) /\ P =/= x ) -> ( ( P D x ) e. RR <-> ( P e. RR /\ x e. RR ) ) ) |
| 23 | 17 22 | mpbid | |- ( ( ( ( P e. RR /\ R e. RR* ) /\ ( P e. RR* /\ x e. RR* /\ ( P D x ) e. RR ) ) /\ P =/= x ) -> ( P e. RR /\ x e. RR ) ) |
| 24 | 23 | simprd | |- ( ( ( ( P e. RR /\ R e. RR* ) /\ ( P e. RR* /\ x e. RR* /\ ( P D x ) e. RR ) ) /\ P =/= x ) -> x e. RR ) |
| 25 | 16 24 | pm2.61dane | |- ( ( ( P e. RR /\ R e. RR* ) /\ ( P e. RR* /\ x e. RR* /\ ( P D x ) e. RR ) ) -> x e. RR ) |
| 26 | 25 | ex | |- ( ( P e. RR /\ R e. RR* ) -> ( ( P e. RR* /\ x e. RR* /\ ( P D x ) e. RR ) -> x e. RR ) ) |
| 27 | 13 26 | biimtrid | |- ( ( P e. RR /\ R e. RR* ) -> ( P ( `' D " RR ) x -> x e. RR ) ) |
| 28 | 11 27 | sylbid | |- ( ( P e. RR /\ R e. RR* ) -> ( x e. [ P ] ( `' D " RR ) -> x e. RR ) ) |
| 29 | 28 | ssrdv | |- ( ( P e. RR /\ R e. RR* ) -> [ P ] ( `' D " RR ) C_ RR ) |
| 30 | 7 29 | sstrd | |- ( ( P e. RR /\ R e. RR* ) -> ( P ( ball ` D ) R ) C_ RR ) |