This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The metric of the extended real number structure coincides with the real number metric on the reals. (Contributed by Mario Carneiro, 3-Sep-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | xrsds.d | |- D = ( dist ` RR*s ) |
|
| Assertion | xrsdsreval | |- ( ( A e. RR /\ B e. RR ) -> ( A D B ) = ( abs ` ( A - B ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | xrsds.d | |- D = ( dist ` RR*s ) |
|
| 2 | rexr | |- ( A e. RR -> A e. RR* ) |
|
| 3 | rexr | |- ( B e. RR -> B e. RR* ) |
|
| 4 | 1 | xrsdsval | |- ( ( A e. RR* /\ B e. RR* ) -> ( A D B ) = if ( A <_ B , ( B +e -e A ) , ( A +e -e B ) ) ) |
| 5 | 2 3 4 | syl2an | |- ( ( A e. RR /\ B e. RR ) -> ( A D B ) = if ( A <_ B , ( B +e -e A ) , ( A +e -e B ) ) ) |
| 6 | rexsub | |- ( ( B e. RR /\ A e. RR ) -> ( B +e -e A ) = ( B - A ) ) |
|
| 7 | 6 | ancoms | |- ( ( A e. RR /\ B e. RR ) -> ( B +e -e A ) = ( B - A ) ) |
| 8 | 7 | adantr | |- ( ( ( A e. RR /\ B e. RR ) /\ A <_ B ) -> ( B +e -e A ) = ( B - A ) ) |
| 9 | abssuble0 | |- ( ( A e. RR /\ B e. RR /\ A <_ B ) -> ( abs ` ( A - B ) ) = ( B - A ) ) |
|
| 10 | 9 | 3expa | |- ( ( ( A e. RR /\ B e. RR ) /\ A <_ B ) -> ( abs ` ( A - B ) ) = ( B - A ) ) |
| 11 | 8 10 | eqtr4d | |- ( ( ( A e. RR /\ B e. RR ) /\ A <_ B ) -> ( B +e -e A ) = ( abs ` ( A - B ) ) ) |
| 12 | rexsub | |- ( ( A e. RR /\ B e. RR ) -> ( A +e -e B ) = ( A - B ) ) |
|
| 13 | 12 | adantr | |- ( ( ( A e. RR /\ B e. RR ) /\ -. A <_ B ) -> ( A +e -e B ) = ( A - B ) ) |
| 14 | letric | |- ( ( A e. RR /\ B e. RR ) -> ( A <_ B \/ B <_ A ) ) |
|
| 15 | 14 | orcanai | |- ( ( ( A e. RR /\ B e. RR ) /\ -. A <_ B ) -> B <_ A ) |
| 16 | abssubge0 | |- ( ( B e. RR /\ A e. RR /\ B <_ A ) -> ( abs ` ( A - B ) ) = ( A - B ) ) |
|
| 17 | 16 | 3com12 | |- ( ( A e. RR /\ B e. RR /\ B <_ A ) -> ( abs ` ( A - B ) ) = ( A - B ) ) |
| 18 | 17 | 3expa | |- ( ( ( A e. RR /\ B e. RR ) /\ B <_ A ) -> ( abs ` ( A - B ) ) = ( A - B ) ) |
| 19 | 15 18 | syldan | |- ( ( ( A e. RR /\ B e. RR ) /\ -. A <_ B ) -> ( abs ` ( A - B ) ) = ( A - B ) ) |
| 20 | 13 19 | eqtr4d | |- ( ( ( A e. RR /\ B e. RR ) /\ -. A <_ B ) -> ( A +e -e B ) = ( abs ` ( A - B ) ) ) |
| 21 | 11 20 | ifeqda | |- ( ( A e. RR /\ B e. RR ) -> if ( A <_ B , ( B +e -e A ) , ( A +e -e B ) ) = ( abs ` ( A - B ) ) ) |
| 22 | 5 21 | eqtrd | |- ( ( A e. RR /\ B e. RR ) -> ( A D B ) = ( abs ` ( A - B ) ) ) |