This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The extended real 'less than' is irreflexive. (Contributed by NM, 14-Oct-2005)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | xrltnr | |- ( A e. RR* -> -. A < A ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elxr | |- ( A e. RR* <-> ( A e. RR \/ A = +oo \/ A = -oo ) ) |
|
| 2 | ltnr | |- ( A e. RR -> -. A < A ) |
|
| 3 | pnfnre | |- +oo e/ RR |
|
| 4 | 3 | neli | |- -. +oo e. RR |
| 5 | 4 | intnan | |- -. ( +oo e. RR /\ +oo e. RR ) |
| 6 | 5 | intnanr | |- -. ( ( +oo e. RR /\ +oo e. RR ) /\ +oo |
| 7 | pnfnemnf | |- +oo =/= -oo |
|
| 8 | 7 | neii | |- -. +oo = -oo |
| 9 | 8 | intnanr | |- -. ( +oo = -oo /\ +oo = +oo ) |
| 10 | 6 9 | pm3.2ni | |- -. ( ( ( +oo e. RR /\ +oo e. RR ) /\ +oo |
| 11 | 4 | intnanr | |- -. ( +oo e. RR /\ +oo = +oo ) |
| 12 | 4 | intnan | |- -. ( +oo = -oo /\ +oo e. RR ) |
| 13 | 11 12 | pm3.2ni | |- -. ( ( +oo e. RR /\ +oo = +oo ) \/ ( +oo = -oo /\ +oo e. RR ) ) |
| 14 | 10 13 | pm3.2ni | |- -. ( ( ( ( +oo e. RR /\ +oo e. RR ) /\ +oo |
| 15 | pnfxr | |- +oo e. RR* |
|
| 16 | ltxr | |- ( ( +oo e. RR* /\ +oo e. RR* ) -> ( +oo < +oo <-> ( ( ( ( +oo e. RR /\ +oo e. RR ) /\ +oo |
|
| 17 | 15 15 16 | mp2an | |- ( +oo < +oo <-> ( ( ( ( +oo e. RR /\ +oo e. RR ) /\ +oo |
| 18 | 14 17 | mtbir | |- -. +oo < +oo |
| 19 | breq12 | |- ( ( A = +oo /\ A = +oo ) -> ( A < A <-> +oo < +oo ) ) |
|
| 20 | 19 | anidms | |- ( A = +oo -> ( A < A <-> +oo < +oo ) ) |
| 21 | 18 20 | mtbiri | |- ( A = +oo -> -. A < A ) |
| 22 | mnfnre | |- -oo e/ RR |
|
| 23 | 22 | neli | |- -. -oo e. RR |
| 24 | 23 | intnan | |- -. ( -oo e. RR /\ -oo e. RR ) |
| 25 | 24 | intnanr | |- -. ( ( -oo e. RR /\ -oo e. RR ) /\ -oo |
| 26 | 7 | nesymi | |- -. -oo = +oo |
| 27 | 26 | intnan | |- -. ( -oo = -oo /\ -oo = +oo ) |
| 28 | 25 27 | pm3.2ni | |- -. ( ( ( -oo e. RR /\ -oo e. RR ) /\ -oo |
| 29 | 23 | intnanr | |- -. ( -oo e. RR /\ -oo = +oo ) |
| 30 | 23 | intnan | |- -. ( -oo = -oo /\ -oo e. RR ) |
| 31 | 29 30 | pm3.2ni | |- -. ( ( -oo e. RR /\ -oo = +oo ) \/ ( -oo = -oo /\ -oo e. RR ) ) |
| 32 | 28 31 | pm3.2ni | |- -. ( ( ( ( -oo e. RR /\ -oo e. RR ) /\ -oo |
| 33 | mnfxr | |- -oo e. RR* |
|
| 34 | ltxr | |- ( ( -oo e. RR* /\ -oo e. RR* ) -> ( -oo < -oo <-> ( ( ( ( -oo e. RR /\ -oo e. RR ) /\ -oo |
|
| 35 | 33 33 34 | mp2an | |- ( -oo < -oo <-> ( ( ( ( -oo e. RR /\ -oo e. RR ) /\ -oo |
| 36 | 32 35 | mtbir | |- -. -oo < -oo |
| 37 | breq12 | |- ( ( A = -oo /\ A = -oo ) -> ( A < A <-> -oo < -oo ) ) |
|
| 38 | 37 | anidms | |- ( A = -oo -> ( A < A <-> -oo < -oo ) ) |
| 39 | 36 38 | mtbiri | |- ( A = -oo -> -. A < A ) |
| 40 | 2 21 39 | 3jaoi | |- ( ( A e. RR \/ A = +oo \/ A = -oo ) -> -. A < A ) |
| 41 | 1 40 | sylbi | |- ( A e. RR* -> -. A < A ) |