This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A real function is a nonnegative extended real function if all its values are greater than or equal to zero. (Contributed by Mario Carneiro, 28-Jun-2014) (Revised by Mario Carneiro, 28-Jul-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | xrge0f | |- ( ( F : RR --> RR /\ 0p oR <_ F ) -> F : RR --> ( 0 [,] +oo ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ffn | |- ( F : RR --> RR -> F Fn RR ) |
|
| 2 | 1 | adantr | |- ( ( F : RR --> RR /\ 0p oR <_ F ) -> F Fn RR ) |
| 3 | ax-resscn | |- RR C_ CC |
|
| 4 | 3 | a1i | |- ( F : RR --> RR -> RR C_ CC ) |
| 5 | 4 1 | 0pledm | |- ( F : RR --> RR -> ( 0p oR <_ F <-> ( RR X. { 0 } ) oR <_ F ) ) |
| 6 | 0re | |- 0 e. RR |
|
| 7 | fnconstg | |- ( 0 e. RR -> ( RR X. { 0 } ) Fn RR ) |
|
| 8 | 6 7 | mp1i | |- ( F : RR --> RR -> ( RR X. { 0 } ) Fn RR ) |
| 9 | reex | |- RR e. _V |
|
| 10 | 9 | a1i | |- ( F : RR --> RR -> RR e. _V ) |
| 11 | inidm | |- ( RR i^i RR ) = RR |
|
| 12 | c0ex | |- 0 e. _V |
|
| 13 | 12 | fvconst2 | |- ( x e. RR -> ( ( RR X. { 0 } ) ` x ) = 0 ) |
| 14 | 13 | adantl | |- ( ( F : RR --> RR /\ x e. RR ) -> ( ( RR X. { 0 } ) ` x ) = 0 ) |
| 15 | eqidd | |- ( ( F : RR --> RR /\ x e. RR ) -> ( F ` x ) = ( F ` x ) ) |
|
| 16 | 8 1 10 10 11 14 15 | ofrfval | |- ( F : RR --> RR -> ( ( RR X. { 0 } ) oR <_ F <-> A. x e. RR 0 <_ ( F ` x ) ) ) |
| 17 | ffvelcdm | |- ( ( F : RR --> RR /\ x e. RR ) -> ( F ` x ) e. RR ) |
|
| 18 | 17 | rexrd | |- ( ( F : RR --> RR /\ x e. RR ) -> ( F ` x ) e. RR* ) |
| 19 | 18 | biantrurd | |- ( ( F : RR --> RR /\ x e. RR ) -> ( 0 <_ ( F ` x ) <-> ( ( F ` x ) e. RR* /\ 0 <_ ( F ` x ) ) ) ) |
| 20 | elxrge0 | |- ( ( F ` x ) e. ( 0 [,] +oo ) <-> ( ( F ` x ) e. RR* /\ 0 <_ ( F ` x ) ) ) |
|
| 21 | 19 20 | bitr4di | |- ( ( F : RR --> RR /\ x e. RR ) -> ( 0 <_ ( F ` x ) <-> ( F ` x ) e. ( 0 [,] +oo ) ) ) |
| 22 | 21 | ralbidva | |- ( F : RR --> RR -> ( A. x e. RR 0 <_ ( F ` x ) <-> A. x e. RR ( F ` x ) e. ( 0 [,] +oo ) ) ) |
| 23 | 5 16 22 | 3bitrd | |- ( F : RR --> RR -> ( 0p oR <_ F <-> A. x e. RR ( F ` x ) e. ( 0 [,] +oo ) ) ) |
| 24 | 23 | biimpa | |- ( ( F : RR --> RR /\ 0p oR <_ F ) -> A. x e. RR ( F ` x ) e. ( 0 [,] +oo ) ) |
| 25 | ffnfv | |- ( F : RR --> ( 0 [,] +oo ) <-> ( F Fn RR /\ A. x e. RR ( F ` x ) e. ( 0 [,] +oo ) ) ) |
|
| 26 | 2 24 25 | sylanbrc | |- ( ( F : RR --> RR /\ 0p oR <_ F ) -> F : RR --> ( 0 [,] +oo ) ) |