This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The nonnegative extended real numbers form an ordered monoid. (Contributed by Thierry Arnoux, 22-Mar-2018)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | xrge0omnd | |- ( RR*s |`s ( 0 [,] +oo ) ) e. oMnd |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | xrge0cmn | |- ( RR*s |`s ( 0 [,] +oo ) ) e. CMnd |
|
| 2 | cmnmnd | |- ( ( RR*s |`s ( 0 [,] +oo ) ) e. CMnd -> ( RR*s |`s ( 0 [,] +oo ) ) e. Mnd ) |
|
| 3 | 1 2 | ax-mp | |- ( RR*s |`s ( 0 [,] +oo ) ) e. Mnd |
| 4 | ovex | |- ( RR*s |`s ( 0 [,] +oo ) ) e. _V |
|
| 5 | xrge0base | |- ( 0 [,] +oo ) = ( Base ` ( RR*s |`s ( 0 [,] +oo ) ) ) |
|
| 6 | xrge0le | |- <_ = ( le ` ( RR*s |`s ( 0 [,] +oo ) ) ) |
|
| 7 | eliccxr | |- ( x e. ( 0 [,] +oo ) -> x e. RR* ) |
|
| 8 | 7 | xrleidd | |- ( x e. ( 0 [,] +oo ) -> x <_ x ) |
| 9 | eliccxr | |- ( y e. ( 0 [,] +oo ) -> y e. RR* ) |
|
| 10 | xrletri3 | |- ( ( x e. RR* /\ y e. RR* ) -> ( x = y <-> ( x <_ y /\ y <_ x ) ) ) |
|
| 11 | 10 | biimprd | |- ( ( x e. RR* /\ y e. RR* ) -> ( ( x <_ y /\ y <_ x ) -> x = y ) ) |
| 12 | 7 9 11 | syl2an | |- ( ( x e. ( 0 [,] +oo ) /\ y e. ( 0 [,] +oo ) ) -> ( ( x <_ y /\ y <_ x ) -> x = y ) ) |
| 13 | eliccxr | |- ( z e. ( 0 [,] +oo ) -> z e. RR* ) |
|
| 14 | xrletr | |- ( ( x e. RR* /\ y e. RR* /\ z e. RR* ) -> ( ( x <_ y /\ y <_ z ) -> x <_ z ) ) |
|
| 15 | 7 9 13 14 | syl3an | |- ( ( x e. ( 0 [,] +oo ) /\ y e. ( 0 [,] +oo ) /\ z e. ( 0 [,] +oo ) ) -> ( ( x <_ y /\ y <_ z ) -> x <_ z ) ) |
| 16 | 4 5 6 8 12 15 | isposi | |- ( RR*s |`s ( 0 [,] +oo ) ) e. Poset |
| 17 | xrletri | |- ( ( x e. RR* /\ y e. RR* ) -> ( x <_ y \/ y <_ x ) ) |
|
| 18 | 7 9 17 | syl2an | |- ( ( x e. ( 0 [,] +oo ) /\ y e. ( 0 [,] +oo ) ) -> ( x <_ y \/ y <_ x ) ) |
| 19 | 18 | rgen2 | |- A. x e. ( 0 [,] +oo ) A. y e. ( 0 [,] +oo ) ( x <_ y \/ y <_ x ) |
| 20 | 5 6 | istos | |- ( ( RR*s |`s ( 0 [,] +oo ) ) e. Toset <-> ( ( RR*s |`s ( 0 [,] +oo ) ) e. Poset /\ A. x e. ( 0 [,] +oo ) A. y e. ( 0 [,] +oo ) ( x <_ y \/ y <_ x ) ) ) |
| 21 | 16 19 20 | mpbir2an | |- ( RR*s |`s ( 0 [,] +oo ) ) e. Toset |
| 22 | xleadd1a | |- ( ( ( x e. RR* /\ y e. RR* /\ z e. RR* ) /\ x <_ y ) -> ( x +e z ) <_ ( y +e z ) ) |
|
| 23 | 22 | ex | |- ( ( x e. RR* /\ y e. RR* /\ z e. RR* ) -> ( x <_ y -> ( x +e z ) <_ ( y +e z ) ) ) |
| 24 | 7 9 13 23 | syl3an | |- ( ( x e. ( 0 [,] +oo ) /\ y e. ( 0 [,] +oo ) /\ z e. ( 0 [,] +oo ) ) -> ( x <_ y -> ( x +e z ) <_ ( y +e z ) ) ) |
| 25 | 24 | rgen3 | |- A. x e. ( 0 [,] +oo ) A. y e. ( 0 [,] +oo ) A. z e. ( 0 [,] +oo ) ( x <_ y -> ( x +e z ) <_ ( y +e z ) ) |
| 26 | xrge0plusg | |- +e = ( +g ` ( RR*s |`s ( 0 [,] +oo ) ) ) |
|
| 27 | 5 26 6 | isomnd | |- ( ( RR*s |`s ( 0 [,] +oo ) ) e. oMnd <-> ( ( RR*s |`s ( 0 [,] +oo ) ) e. Mnd /\ ( RR*s |`s ( 0 [,] +oo ) ) e. Toset /\ A. x e. ( 0 [,] +oo ) A. y e. ( 0 [,] +oo ) A. z e. ( 0 [,] +oo ) ( x <_ y -> ( x +e z ) <_ ( y +e z ) ) ) ) |
| 28 | 3 21 25 27 | mpbir3an | |- ( RR*s |`s ( 0 [,] +oo ) ) e. oMnd |